
SFA Modernization Partner
United States Department of Education

Student Financial Assistance

Integrated Technical Architecture
Release 2.0 Technical Specification

Task Order #46

Deliverable # 46.1.3

August 10, 2001

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 1 of 146

Table of Contents

1 EXECUTIVE SUMMARY ..3

1.1 INTRODUCTION ...3
1.2 DESCRIPTION OF SECTIONS ...4
1.3 APPROACH ..4
1.4 SCOPE ...4
1.5 ASSUMPTIONS...5
1.6 INTENDED AUDIENCE ...5

2 FUNCTIONAL OVERVIEW..6

2.1 COMPONENT FACTORY ...6
2.2 E-MAIL ..6
2.3 EXCEPTION HANDLING ...7
2.4 LOGGING...8
2.5 PERSISTENCE ..8
2.6 SEARCH...9

3 DETAILED DESIGNS...10

3.1 COMPONENT FACTORY ...10
3.1.1 Introduction ..10
3.1.2 System Overview...10
3.1.3 Design Considerations ...12
3.1.4 System Architecture..12
3.1.5 Detailed System Design..15
3.1.6 Class Diagrams ..26
3.1.7 Interaction Diagram...27
3.1.8 References ..28

3.2 E-MAIL ...29
3.2.1 Introduction ..29
3.2.2 System Overview...29
3.2.3 Design Considerations ...29
3.2.4 System Architecture..30
3.2.5 Detailed System Design..31
3.2.6 Class Diagrams ..35
3.2.7 Interaction Diagrams ...36
3.2.8 References ..37

3.3 EXCEPTION HANDLING ...38
3.3.1 Introduction ..38
3.3.2 System Overview...38
3.3.3 Design Considerations ...39
3.3.4 System Architecture..40
3.3.5 Detailed System Design..40

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 2 of 146

3.3.6 Class Diagrams ..49
3.3.7 Interaction Diagrams ...50
3.3.8 References ..51

3.4 LOGGING...52
3.4.1 Introduction ..52
3.4.2 System Overview...52
3.4.3 Design Considerations ...53
3.4.4 System Architecture..53
3.4.5 Detailed System Design..58
3.4.6 Class Diagrams ..101
3.4.7 Interaction Diagrams ...104
3.4.8 References ..105

3.5 PERSISTENCE ..106
3.5.1 Introduction ..106
3.5.2 System Overview...106
3.5.3 Design Considerations ...108
3.5.4 System Architecture..109
3.5.5 Detailed System Design..111
3.5.6 Class Diagrams ..125
3.5.7 Interaction Diagrams ...127
3.5.8 References ..128

3.6 SEARCH...129
3.6.1 Introduction ..129
3.6.2 System Overview...129
3.6.3 Design Considerations ...129
3.6.4 System Architecture..130
3.6.5 Detailed System Design..134
3.6.6 Class Diagrams ..142
3.6.7 Interaction Diagrams ...143
3.6.8 References ..144

APPENDIX A – ITA RCS AND SFA APPLICATIONS MATRIX ..145

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 3 of 146

1 Executive Summary

1.1 Introduction
The Integrated Technical Architecture (ITA) Release 2.0 (R2.0) builds on Release 1.0 (R1.0) in
order to provide the Department of Education’s Student Financial Assistance (SFA) program
with a more robust core infrastructure for its application and production efforts. In addition to
providing SFA’s application teams with a core set of products and Subject Matter Expert (SME)
support, ITA R2.0 will provide a set of Java 2 Enterprise Edition (J2EE) technical architecture
Reusable Common Services (RCS).

The Reusable Common Services (RCS), based completely on open-source technology and Java 2
Enterprise Edition (J2EE), enables solutions for developing multi-tier server-centric applications.
Leveraging well established design patterns and extensive experience gained on large-scale
enterprise engagements, the RCS provide a robust set of services for application architects to
define the fundamental architecture for their application, thereby enabling them to focus on the
company’s core business.

The main benefits of ITA RCS in a project are as follows:

• Lower cost – Application teams can save hundreds of man-days by not reinventing
architectural services.

• Reduced risk – Architecture built from Accenture client experience resulting in robust
solutions.

• Speed of Implementation – Allows application developers to focus more on the
applications and business logic. It enables application teams to build robust J2EE
applications in a shorter timeframe.

• Skillset - Provides some of the reusable architecture services that application project teams
do not have or experience to build.

• Quality – Large and growing user base identifies error and problems quickly.

The ITA R2.0 Technical Specification provides information on the following ITA Reusable
Common Services:

• Component Factory – Defines a general and extensible factory mechanism. The service
enables developers to completely decouple how objects and components are instantiated
from their use.

• E-mail Framework – Provides a common way to generate e-mail messages from Java
applications.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 4 of 146

• Exception Handling Framework – Defines a set of base classes to standardize and simplify
exception handling for SFA application teams.

• Logging Framework – Defines a facility to manage and log information messages.

• Persistence Framework – Encapsulates the behavior needed to make objects persistent.
Supports saving, deleting, or retrieving many objects at once.

• Search Framework – Simplifies, standardizes, and improves the use of the Autonomy
search engine.

1.2 Description of sections
The ITA R2.0 Technical Specification is divided into the following sections:

• Section 1 provides a high level overview of the document.

• Section 2 provides a functional overview of the RCS services.

• Section 3 provides detailed designs for the RCS services.

• Appendix A provides a matrix that details the current and potential usage of RCS services
by SFA’s applications.

1.3 Approach
The RCS services are built based on an open technology and J2EE architecture. The ITA team
leveraged previous Accenture and industry experience to design and develop a robust set of core
technical architecture common services that specifically address SFA enterprise application
requirements.

The core of the RCS services consists of the exception handling and logging frameworks. The
other frameworks use these services to provide standard and consistent exception handling and
logging.

1.4 Scope
The ITA Release 2.0 Technical Specification provides information on the components that directly
compose the ITA RCS frameworks. While the frameworks make use of many Java features and
packages, such as JDBC, RMI, I/O, and JavaMail, the Technical Specification does not cover these
topics. For additional information on these topics, please refer to the Sun Java website
(http://www.javasoft.com) or applicable Java programming guides.

SOAP, UDDI and other services will be explored for ITA Release 3.0. These services as presently
evolving standards, and are expected to firm up in the ITA R3.0 timeline.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 5 of 146

1.5 Assumptions
The RCS services were built and tested in the ITA R2.0 environment. The following table
summarizes the ITA R2.0 products and versions. Products not listed in the table do not interface
directly with the ITA R2.0 RCS services consequently upgrades or changes to those products
should have no effect on the ITA R2.0 RCS services. While the RCS Services were built using
these product versions, the services were built in accordance with J2EE standards and to support
product upgrades.

Function Product ITA 2.0

HTTP Server IBM HTTP Server v. 1.3.12.2

Java Application Server WebSphere Application Server
Advanced Edition

v. 3.5.3

Search Engine Autonomy Knowledge Server v. 2.1

Database Oracle 8i v. 8.1.6

Java Development Tool Visual Age for Java Enterprise
Edition

v. 3.5.3

1.6 Intended Audience
The ITA R2.0 Technical Specification is intended for ITA and SFA software engineers, standards
managers, etc… who need to understand the RCS frameworks in order to troubleshoot or
enhance the packages. The document is not intended as a programmer’s guide for how to use the
frameworks in developing applications. A user’s guide detailing how to use the RCS frameworks
will be provided in a separate document.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 6 of 146

2 Functional Overview
This section provides a functional overview of the following RCS services:

• Component Factory

• E-mail

• Exception Handling

• Logging

• Persistence

• Search

2.1 Component Factory
The component factory defines a general and extensible factory mechanism. The service enables
developers to completely decouple how objects and components are instantiated from their use.
In addition, the meta-information used to define the object production mechanism and
surrounding context is provided via configuration properties, thereby allowing production
instances to be changed with minimal effort. The component factory enables the definition of
clear migration strategies from one architectural approach to another.

The component factory provides an extensible mechanism to associate producers, targets and
context together to produce objects. A common set of producers will be provided that cover a
large percentage of scenarios relating to co-located and J2EE object/component production.

This framework will provide the following features:

• Standard methods of producing objects when parameters are passed

• Common parameters to be passed when producing objects

• Standards for coding and designing objects

• Examples for using the component factory framework

2.2 E-mail
The e-mail framework provides SFA with a common way to generate e-mail messages from
applications. The e-mail framework uses Sun Microsystems’ JavaMail API 1.2, a part of the J2EE
framework, which provides a standard interface for Java programs to send e-mails to a Simple
Mail Transport Protocol (SMTP) Mail server.

The e-mail framework may be used by SFA application teams to standardize e-mail messaging
and replace existing methods of sending e-mail. (The ITA R1.0 applications currently send e-mail

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 7 of 146

through two methods – one uses JavaMail and the other uses an Oracle database, UNIX shells
scripts, and a sendmail operating system utility.)

The ITA e-mail framework provides the following features:

• Dynamically set all elements of an e-mail ("To" address, "From" address, subject, etc.)

• Send attachments to e-mail

• Set multiple e-mail addresses within the "To" address, "From" address, and "Reply To"
address

• Dynamically set the SMTP Server

• Verify e-mail parameters meet minimum standards for delivery.

• Send a real time e-mail to a SMTP Server

• Process batch e-mails and send to a SMTP Server at a specified time

2.3 Exception Handling
An exception is a code or language construct that indicates when an unusual or unexpected error
condition occurs in an application. Examples of exceptions are hardware, network, I/O, or
memory problems. If an exception is “handled” in code, it can be dealt with gracefully and will
not necessarily have to cause program termination. Exception handling provides a mechanism
for writing robust, resilient code that is capable of dealing with the unexpected.

The exception handling framework will help standardize and simplify exception handling for
SFA’s application teams. The standardized exception handling will also help reduce the
possibility of uncaught exception scenarios.

The exception handling framework provides the following general services and components:

• Guidelines for identification and responding to exceptions

• Guidelines for throwing and catching exceptions

• Base exception classes

• Default last-resort exception handlers

• Simple interface for integration of logging exceptions

• A generic exception class that must be thrown by all components in the application. It
contains a status code that represents the type of exception. This generic exception can be
extended for specific errors

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 8 of 146

• An exception factory class that will be used to create exceptions and will automatically
assign a unique id. This unique id will be displayed to the user if necessary in order to
uniquely identify the associated log and therefore all the associated information.

2.4 Logging
The logging framework enables users to track and identify the source of errors. The logging
framework uses a routine to determine the originating class and method for the logging call.
This provides complete and descriptive logs that enable operations personnel to view the logs
and quickly determine where the instance or error occurred and possibly what caused it. Logs
are not tied to exceptions only; they are customized to record access and other useful information
in troubleshooting and analyzing an application.

Users can define handlers to be global or assign them to specific, named loggers. Loggers can be
associated to both the global handler set and to specific handlers. The formatting of the message
only happens at the handler. Both loggers and handlers can filter messages based on some
function, and by the level of the message.

A set of appropriate handlers will be defined for the given application. This could mean Error or
higher goes to a specific handler and Info and higher goes to another. In general, these handlers
will be global. Application code should log to a named logger appropriate to its subsystem.
Finer control of log levels is set within the handler. However, further filtering will require the
creation of a custom filter that is attached to the handler.

The logging framework provides the following features:

• Custom logging

• Filtering messages by level

• Integration with the exception handling framework

• Channel functionality to provide the ability to listen to multiple applications on one
server

2.5 Persistence
The persistence framework encapsulates the behavior needed to make objects persistent.
Specifically, a persistence framework reads, writes, and deletes objects to/from permanent
storage. The persistence provides full encapsulation of the persistence mechanism. Application
developers can send a save, delete or retrieve message to the persistence framework and the
framework will handle the rest of the interaction with the database.

The persistence framework also provides the ability to implement persistence behavior on
multiple objects concurrently. The framework supports saving, deleting, or retrieving many
objects at once depending upon a specific criterion.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 9 of 146

The persistence layer can implement transactional behavior on objects. A transaction is defined
as a combination of actions implemented on several objects concurrently. An example is adding
an object to a database and deleting another object from another database and being able to
rollback the entire transaction if an error occurred.

The persistence layer uses pooling resources available to help maintain efficient use of the
database. If a single client has the ability to request every record from a datasource, then that
client may be able to consume almost all resources of that datasource. The persistence
framework uses a controlled approach that does not allow runaway use of a resource.

The persistence layer can dynamically run stored procedures on the database or submit SQL
directly from the application. The persistence framework includes application supplied data
classes that allow the framework to know the schema of the database it is connected to.

2.6 Search
The search framework simplifies, standardizes, and improves the use of the Autonomy search
engine. This framework complies with J2EE standards instead of using CGI as in the current
search engine interface. The framework consists of a search classes that provides a common way
to access the Autonomy HTTP API and utilize its features.

The search wrapper implements the following Autonomy features:

• Query search engine

• Natural Language or "Fuzzy" query search engine

• Display search results

• Suggest additional search results

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 10 of 146

3 Detailed Designs
This section provides detailed designs for the ITA R2.0 RCS frameworks.

3.1 Component Factory

3.1.1 Introduction
The component factory framework, also known as the Object Factory, is a producer of objects.
The component factory is implemented using an SFA-customized version of Accenture’s GRNDS
(General and Reusable Netcentric Delivery Solution) factory framework. The GRNDS code has
been significantly modified to meet SFA application development requirements, and to work
optimally in the SFA technical environment. The GRNDS code formed the basis for the
framework; however, the SFA Component Factory is now the standard.

Additional technical documentation is provided in this document in order to help developers use
the Component Factory framework in their applications. The framework has been modified to:

• Support applications running on the IBM WebSphere Application Server (WAS)

• Limit the framework to a local class since SFA applications are not currently
implementing Enterprise JavaBeans

• Integrate with the RCS Exception Handling framework

• Integrate with the RCS Logging framework

3.1.2 System Overview
The component factory framework is created using the Java programming language. The
component factory will run on IBM’s WebSphere Application Server (WAS). However, there is
not anything in the package that will limit the component factory to only run on WAS. The
component factory encapsulates object creation logic by providing an instance of an object and
not revealing its implementation.

The component factory implements the factory method pattern. There is no single class that
makes the decision as to which subclass to instantiate. Instead, the superclass (SFAProducer)
defers the decision to each subclass. This pattern does not actually have a decision point where
one subclass is directly selected over another subclass. A program written using this pattern
defines an abstract class that creates objects but lets each subclass decide which object to create.

The component factory framework defines a general and extensible factory mechanism. It allows
developers to completely decouple how objects and components are instantiated from their use.
In addition, the meta-information defines the object production mechanism, and provides
surrounding context via configuration properties thereby allowing production to be changed

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 11 of 146

with minimal effort. As a result the component factory provides a very powerful service, and
enables the definition of clear migration strategies from one architectural approach to another.

The component factory includes standard methods of producing objects when parameters are
passed, common parameters to be passed when producing objects, and examples for using the
component factory framework. Components can be registered by adding properties to the
factory’s defined configuration domain. The RCS component factory framework offers a
standardized approach to retrieving system components through a predefined lookup
mechanism.

Implementing the component factory will provide application teams with the following benefits:

Rapid development and code reuse
If an environment needs to be configured before creating an instance of an object then using the
component factory will ease the object creation by allowing a developer to call the produce
method of the factory and not to worry about setting up an environment. A properties file that is
used to create the object will configure the environment. This will help promote rapid software
development and code reuse.

Complex object creation
If object creation is complex (i.e., a class uses its subclasses to specify which objects it creates)
then using the component factory can ease the development effort.

Migrating to different environments
If the production and development environments are not a mirror image of each other, then the
developer can encapsulate all the configuration information in the SFAFactory class and just
create an instance of an object. As a result, the component factory enables the definition of clear
migration strategies from one architectural approach to another.

Technology change
The technology underlying the creation of an object can change. Future releases of RCS will
extend the component factory to support EJBs and JDBC 2.0 DataSources. After the component
factory is extended it can be used to create lite-EJBs that are collocated with servlets and JSPs.
Later these lite-EJBs can be converted into complete EJBs and deployed onto an application
server without changing any of the previously defined servlets and JSPs.

Arbitrary data types
The component factory can be used with arbitrary data types. The component factory is
organized in such a way that it can instantiate other classes without being dependent on any of
the classes it instantiates.

Adding new classes
The component factory can easily add new subclasses without impacting the existing classes.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 12 of 146

Thus, as the application gets more complex (e.g., the application uses EJBs) then the developer
can easily extend the component factory by additional classes that create different types of
objects.

3.1.3 Design Considerations
3.1.3.1 Assumptions and Dependencies

It is assumed that the component factory framework will function in a J2EE application server
environment. As the current production server for SFA is IBM’s WAS v. 3.5, the framework will
be compiled using its required JDK version 1.2.2. It will also work with the current JavaServer
Pages (1.1), Java Servlet (2.2), Java Messaging Service (1.0.1), and Java Database Connectivity (2.0)
specifications for this server.

3.1.3.2 Goals and Guidelines

The component factory framework will provide a robust framework that can easily be utilized by
any SFA development team building applications using Java and WebSphere (although there is
nothing in this package that ties it to WebSphere). The component factory framework is a
producer of objects that accepts some information about how to create an object, such as a
reference, and then returns an instance of that object. The components must be registered with
the component factory.

3.1.3.3 Development Methods

This framework will be developed using general object-oriented software development
techniques as specified in any standard text on the Java programming language. As the
framework itself is fairly straightforward in the class and relationship patterns it employs, no
object oriented modeling tool or methodology was specifically used in its design. However, the
standard class and sequence diagrams are provided in this document in order to illustrate the
factory’s structure. These diagrams should assist developers who are unfamiliar with this
framework.

3.1.4 System Architecture
The component factory framework has six classes. The class diagram shows how the classes are
related to each other. Each class is described below.

3.1.4.1 SFAObject

The SFAObject extends Object. It is a base class for the component framework. It overrides some
of the methods [e.g., equals(), hashcode(), toString() etc.] of the object class. The SFAProducer
class extends this class.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 13 of 146

3.1.4.2 SFAProducer

The SFAProducer is an abstract class. SFAProducer objects are used to retrieve components of a
specific type. A local class represents the component. The SFAProducer class is a super class of
the SFALocalProducer.

3.1.4.3 SFAFactory

The SFAFactory class provides an extensible mechanism to associate producers, targets, and
context together to produce objects. The main responsibility of the SFAFactory is to retrieve a
target using the proper producer. The task of producing the target is delegated to the
SFAProducer. The SFAFactory contains the produce method that is typically the only method in
the framework that developers call directly. The SFAFactory defines the strategy used to
produce an object reference for a given key.

3.1.4.3.1 Producer

Producers define the strategy to produce an object reference for a given key. Producers are
named entities that produce objects based on configuration properties in <DOMAIN>.properties
file. Producers may be configured using the form indicated below.

sfa.factory.producer.<name>=<classname>
sfa.factory.env.producer.<name>.<property>=<value>

The first property form is used to register a named producer. The second property form is used
to set an environment property available for the producer across targets. This value can be
overridden by a target specific property value.

3.1.4.3.2 Default Producer

A default producer may be defined by setting the property, sfa.factory.producer.default, to the
desired producer class. If no default is set, then a producer is not used for the target and a
warning should be logged. The RCS logging framework should be used for all logging purposes.
A default producer is set through the properties as shown below. sfa.factory.producer.default =
<classname>

Environment properties for the default producer are set through the properties as shown below.

sfa.factory.env.producer.default.<defaultproperty>=<value>

3.1.4.3.3 Target

Targets logically represent what clients want to create. Targets are set to be produced by a
named producer. More specific properties may be applied to each target. Producers use these
properties to produce target instances. Typically, target properties override more general

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 14 of 146

producer level properties with the same name, but this is dependent on the producer
implementation (via the SFAProducer.getProperty() method).

Targets are configured as shown below.

sfa.factory.target.producer.<target-name>=<producer-name>
sfa.factory.env.target.<target-name>.<property>=<value>

The first property form is used to register a target with a named producer. The second property
form is used to set an environment property available to the producer for that target. This value
may override a more general producer property value.

If a target is not explicitly set to be produced by a named producer, it will be assigned to the
default producer. Target environment properties may be set even if the target is not explicitly
registered with a producer. These properties will be used in conjunction with the default
producer properties during production.

3.1.4.4 ProducerContainer

The ProducerContainer is an inner class of SFAFactory. This class defines the strategy used to
produce an object reference for a given key. It calls the produce() methods for other classes (e.g.,
SFALocalProducer), which will return an instance of an object.

3.1.4.5 SFALocalProducer

The SFALocalProducer class extends SFAProducer class. This class uses simple reflection to
create the target instance. This class uses the classname property to identify the class type
producer for the target. This property is required, and must specify the fully-qualified Java
classname for a class that can be found using the Class.forName() method.

Domain classes are a type of entity that may be registered with the SFAFactory. The class files
for Domain classes are collocated with the SFAFactory client. As a result, to register them, the
only thing that must be done is registering the class name with a logical name, and setting the
target’s classname property.

3.1.4.6 SFAFactoryException

The SFAFactoryException class throws exceptions while producing a reference to a component.
This exception typically points to component factory misconfiguration. This class should be able
to extend the RCS exception handling framework.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 15 of 146

3.1.5 Detailed System Design
3.1.5.1 Component Overview

The SFAFactory provides an extensible mechanism to associate producers, targets and context
together to produce objects.

Producers define the strategy used to produce an object reference by a given key. Objects are
instantiated by a simple reflection-based technique. The SFAFactory defines a single facility that
consolidates those strategies and enables their selection to be deferred or changed. A default
producer may be defined by setting the property to the desired producer class. Targets logically
represent what clients want to create. Targets are set to be produced by a named producer.
Producers use these properties to produce target instances.

3.1.5.2 Component Definitions

SFAObject

Class Name: SFAObject

Component: Component Factory

Description: This class defines behaviors which are required, suggested and
 useful for typical classes.

Package: sfa.gov.ed.ita.componentfactory

Superclass: Object

Attribute Type Description

Protected:

serialVersionUID static final long Serial id

Con/Destructors Arguments

(Type, Name)

Description

SFAObject None Default constructor

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 16 of 146

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

Protected:

doToString None

String

This method is called from the
template toString method.
Subclasses implement
doToString() to help produce an
appropriate string representation
of the object.

isEqualsIdentityBased() None boolean

Return true is equals() should be
based on the identity of the
object (by its reference in
memory), or false if equals() is
based on a logical comparison.

Public:

equals Object rhs_ boolean This template method
implements the baseclass form of
equals. All classes should
implement equals. Subclasses
should override equals(),
however they should call
super.equals().

hashCode None int This method implements the
canonical baseclass form of
hashCode(). All classes should
implement hashCode().
Subclasses should override
hashCode(), however they
should call super.hashCode() .

toString None String This template method
implements a canonical form of
toString. Subclasses should
override the doToString method,
producing an appropriate string
value.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 17 of 146

SFAProducer

Class Name: SFAProducer

Component: Component Factory

Description: This class defines the strategy to produce an object reference by a given key.

Package: gov.sfa.ed.ita.componentfactory

Superclass: SFAObject

Attribute Type Description

private:

m_env Properties Property file to set the environment

Con/Destructors Arguments

(Type, Name)

Description

SFAProducer None Default constructor - initialize m_env.

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

Public:

equals Object rhs_ boolean Compare objects and property
files.

getEnvironment None Properties Get the environment (m_env).
This is a final method.

getProperty String name_
Properties ctx_

String Return the corresponding
property listed within ctx_ or
producer environment set.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 18 of 146

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

hashCode None int Return hash code.

produce String name_
Object[] args_
Properties ctx_

Object
throws
SFAFactoryExcept
ion

This is an abstract method. Used
by clients to actively produce the
object identified by the ctx_
argument. The ctx_ argument is
provided to the producer to
assist producing the return
value.

setEnvironment Properties env_ void This is a final method. Used
prior to executing a retrieval to
set the configuration
environment, if appropriate, that
will be initialized into the
retrieved component.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 19 of 146

SFAFactory

Class Name: SFAFactory

Component: Component Factory

Description: This class provides an extensible mechanism to associate producers, targets, and
context together to produce objects.

Package: sfa.gov.ed.ita.componentfactory

Superclass: Object

Attribute Type Description

Public:

DEFAULT_PRODUCER_NAME = "default"; static final String Class constant

Private:

REG_DEFAULT_PRODUCER
="sfa.factory.producer.default"; static final String Class constant

ADD_DEFAULT_ENV_PROP
="sfa.factory.env.producer. default."; static final String Class constant

REG_TARGET_PREFIX =
"sfa.factory.target.producer."; static final String Class constant

ADD_TARGET_ENV_PROP
="sfa.factory.env.target."; static final String Class constant

REG_PRODUCER_PREFIX =
"sfa.factory.producer."; static final String Class constant

ADD_PRODUCER_ENV_PROP =
"sfa.factory.env.producer."; static final String Class constant

ms_defaultProducer static SFAProducer Default producer

ms_producers static Hashtable Hashtable that list producers

ms_targetProducers static Hashtable Target producer

ms_isInitialized static boolean Flag for initialization

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 20 of 146

Attribute Type Description

ms_configEnv static Properties Configuration file

Con/Destructors Arguments

(Type, Name)

Description

SFAFactory None Default constructor

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

Public:

addProducer String name
SFAProducer p_

void This is a static synchronized
method. Add a producer
dynamically to the SFAFactory.

addTargetProducer String target_
Properties ctx_

void This is a synchronized method.
Add a target, and its associated
property context, to the
SFAFactory. Calls
addTargetProducer (string,
string, properties) method.

addTargetProducer String target_
String producerName_
Properties ctx

void This is a synchronized method.
Adds a target, and its associated
property context, to the
SFAFactory. The name of the
producer responsible for target
production must be specified.

Produce String name_ Object
Throws
SFAFactoryExcept
ion

Returns a reference to the
component for the given name_.
Calls produce (string, object)
where object is null.

Produce String name_
Object[] args_

Object
Throws
SFAFactoryExcept
ion

Returns a reference to the
component for the given name_.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 21 of 146

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

setEnvironment Properties env_ void Sets the configuration
environment for the SFAFactory
facility. This environment is used
during the facility's initialization
and refreshing processes. This
method should set the factory’s
configuration environment.
Another option would be to
import grnds-core.jar file in the
program that sets the
configuration environment.

Private:

doAddProducerProperty String configProperty_
Hashtable envs_

void This is a synchronized method.
It configures SFAProducer
property.

doAddTargetProperty String configProperty_
Hashtable ctx_

void This is a synchronized method.
It configures target property.

doPopulateProductionEnviro
nments

Hashtable producerEnvs_ void Populate producer context
properties.

doPopulateTargetContexts Hashtable ctx_ void Populate target context
properties.

doRegisterProducer String name_
String property_

void
throws
SFAFactoryExcept
ion

Register the producer.

doRegisterTarget String target_
String property_

void
throws
SFAFactoryExcept
ion

Register the target.

getDefaultEnvironment None Properties Get the default environment.

getProducerContainer String name_ ProducerContaine
r

This is a synchronized method.
It gets the ProducerContainer..

Init None void
throws
SFAFactoryExcept
ion

Configure environment for
Component Factory and
initialize the factory.

initProducers None void
throws
SFAFactoryExcept
ion

Initialize the SFAFactory.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 22 of 146

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

initTargetProducers None void
throws
SFAFactoryExcept
ion

Initialize the target producer.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 23 of 146

ProducerContainer

Class Name: ProducerContainer

Component: Component Factory

Description: This class defines the strategy to produce an object reference by a given key.

Package: gov.sfa.ed.ita.componentfactory

Superclass: SFAProducer

Attribute Type Description

private:

m_producer SFAProducer Producer

m_ctx Properties Property file

Con/Destructors Arguments

(Type, Name)

Description

ProducerContainer SFAProducer p_ Initialize all the private variables.

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

Public:

produce String name_
Object[] args_

Object
throws
SFAFactoryExcept
ion

This method calls the
SFAProducer’s produce method.

setContext properties ctx_ void Set the m_ctx variable.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 24 of 146

SFALocalProducer

Class Name: SFALocalProducer

Component: Component Factory

Description: This class uses the classname property to identify the class type producer for the
target. It uses simple reflection to create the target instance.

Package: gov.sfa.ed.ita.componentfactory

Superclass: SFAProducer

Attribute Type Description

private:

serialVersionUID static final long serial id

Con/Destructors Arguments

(Type, Name)

Description

SFALocalProducer None Default constructor - initialize m_env.

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

Public:

produce String name_
Object[] args_
properties ctx_

Object
throws
SFAFactoryExcept
ion

Create an instance of the local
class.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 25 of 146

SFAFactoryException

Class Name: SFAFactoryException

Component: Component Factory

Description: This exception may be thrown while producing a reference to a component. This
exception typically points to Component Factory misconfiguration

Package: gov.sfa.ed.ita.componentfactory

Superclass: SFAException

Attribute Type Description

private:

serialVersionUID static final long Serial id

Con/Destructors Arguments

(Type, Name)

Description

SFAFactoryException None Default constructor

SFAFactoryException String msg_
Throwable error_

Calls the super class’s constructor.

SFAFactoryException String msg_ Calls the super class’s constructor.

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

Public:

None

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 26 of 146

3.1.6 Class Diagrams
3.1.6.1 Component Factory Class

SFAFactoryException
$ serialVersionUID : long = - 2381903978182403686L

SFAFactoryException()
SFAFactoryException()
SFAFactoryException()

SFALocalProducer
$ serialVersionUID : long = 5394842987458498798L

SFALocalProducer()
produce()

SFAProducer

SFAProducer()
produce()
getProperty()
getEnvironment()
setEnvironment()
equals()
hashCode()

SFAFactory
$ ms_isInitialized : boolean = false

produce()
produce()
addProducer()
addTargetProducer()
addTargetProducer()
setEnvironment()
init()
getDefaultEnvironment()
initProducers()
initTargetProducers()
doRegisterProducer()
doAddProducerProperty()
doPopulateProducerEnvironments()
doRegisterTarget()
doAddTargetProperty()
doPopulateTargetContexts()
getProducerContainer()
SFAFactory()

SFAObject

$ serialVersionUID : long = 4223784904939987483L

SFAObject()
equals()
hashCode()
toString()
isEqualsIdentityBased()
doToString()

(from foundation)

ProducerContainer

ProducerContainer()
produce()
setContext()

(from SFAFactory)

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 27 of 146

3.1.7 Interaction Diagram
This sequence diagram illustrates how the SFALocalProducer fulfills its object request.
Understanding any one of the object calls, should serve as good basis for all other object request
calls in this package.

return result

AppClass SFALocalProducerSFAProducer SFAFactory
Exception

SFAFactory

produce (String, Object[], properties)

5: getProperty()

6: Property

7: if property = null

result = classname.newinstance

if error

10:

1: SetEnvironment (properties)

4: produce (String, Object[], Properties)

2: Produce (String)

3:

8:

9:

1. Set Environment

2. Appl ication class calls the
SFAFactory's produce method
by passing what it wants to
create.

3. SFAFactory calls
SFAProducer (an abstract
class) produce method

4. SFAProducer determines
the kind of object the client
wants and calls the
appropriate class's produce
method (eg.
SFALocalProducer)

5. SFALocalProducer request
the property file.

6. Property file is returned to
the SFALocalProducer

7. If property file is not
configured properly or
SFALocalProducer cannot
load the property file then it
throws SFAFactoryException

8. If SFALocalProducer can
load the property file then it will
create an instance of an object
specified in the property file.

9. If there is mis-
configuration in the property
file then SFALocalProducer
will throw
SFAFactoryException

10. If there are no errors then
an instance of an object will
be returned to the appl icaiton
code (client).

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 28 of 146

3.1.8 References
• Design Patterns: Elements of Reusable Object Oriented Software, Gamma, Helm, Johnson,

Vlissides. 1998

• GRNDS framework
https://onesource.accenture.com

• Sun Java web-site
http://java.sun.com

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 29 of 146

3.2 E-Mail

3.2.1 Introduction
The e-mail framework provides SFA with a common way to generate e-mail messages from
applications. The e-mail framework uses Sun Microsystems’ JavaMail API 1.2, a part of the J2EE
standard, which provides a standard interface for Java programs to send e-mails to a Simple Mail
Transport Protocol (SMTP) Mail server.

Previously, SFA applications used different methods to send e-mail messages. These methods
included using a previous version of the JavaMail API and a propriety design that retrieves
messages out of an Oracle database, processes each with UNIX shell scripts, and then sends the e-
mail with the operating system utility sendmail.

3.2.2 System Overview
The e-mail framework will be implemented using a SFA customized version of Jnet’s SMTP
Client JavaBean. The e-mail framework uses Sun Microsystems’s JavaMail API 1.2, which
provides a standard interface for Java programs to send e-mails to a SMTP Mail server. The
JavaMail API is in turn built upon the Java Activation Framework (JAF), allowing complex
message submitting and retrieving through different protocols. These standard APIs provide a
platform independent and protocol independent framework to build Java technology based mail
and messaging applications.

The e-mail framework provides applications with the following features:

• Dynamically set all elements of an e-mail ("To" address, "From" address, subject, etc.)

• Send attachments to e-mail

• Set multiple e-mail addresses within the "To", "From", and "Reply To" fields

• Dynamically set the SMTP Server

• Verify e-mail parameters meet minimum standards for delivery

• Send a real time e-mail to a SMTP Server

• Process batch e-mails and send to a SMTP Server at a specified time

3.2.3 Design Considerations
3.2.3.1 Assumptions and Dependencies

It is assumed that this framework will function in a J2EE application server environment. As the
current production server for SFA is IBM WebSphere 3.5.3, the framework will be compiled using
its required JDK version 1.2.2. It should also work with the current JavaServer Pages (1.1), Java

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 30 of 146

Servlet (2.2), Java Messaging Service (1.0.1), and Java Database Connectivity (2.0) specifications
for this server.

3.2.3.2 General Constraints

The e-mail framework will require that a SMTP Server is available so that e-mails generated by
the client application may route mail to it. Currently, ITA applications use the operating system
utility sendmail that is available on the majority of Unix machines.

3.2.3.3 Goals and Guidelines

The e-mail framework will provide SFA with a robust framework that can easily be utilized by
SFA development teams building applications in Java, or more specifically WebSphere (although
there is nothing in this package that ties it to WebSphere). In the past, the SFA operations group
has reported limited success in tracing and debugging e-mail problems. The e-mail framework
will be reliable and easy to debug if problems occur. To this end, the RCS logging and exception
handling frameworks will be used to document any errors that the e-mail framework encounters.

Another goal of this framework is to standardize SFA applications on a single interface to e-mail.
As specified before, different implementations of e-mail have occurred in previous SFA
applications and it is important that a supportable, maintainable, and standard e-mail interface
be used across all SFA applications. The RCS e-mail framework will handle real-time individual
e-mails as well as large volumes of scheduled batch e-mails.

A final goal is to insure that the performance of this e-mail framework does not hinder the
performance of the applications using it. Since the ITA environment SMTP Server is local,
performance should not be an issue, but the ITA team will ensure adequate performance testing
before releasing the e-mail framework.

3.2.3.4 Development Methods

This framework was developed using general object-oriented software development techniques
as are specified in any standard text on the Java programming language. As the framework
itself is fairly straightforward in its class and relationship patterns it employs, no object oriented
modeling tool or methodology was specifically used in its design. However, the resulting class
files have been documented with standard class diagrams and sequence diagrams using Rational
Rose in order to illustrate its structure more readily. These diagrams should be helpful to
programmers unfamiliar with this framework.

3.2.4 System Architecture
The e-mail Framework provides the ability to create, manipulate, and send e-mails from any Java
application running within a J2EE Application Server. Developers can use the simplified e-mail
framework to send e-mail or extend the JavaMail API’s themselves for specific e-mail features.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 31 of 146

3.2.4.1 Subsystem Architecture: SFA E-mail JavaBean

As specified in the System Overview, the e-mail framework uses a SFA customized version of the
Jnet SMTP JavaBean to provide simplified interfaces to the Sun Microsystems’s JavaMail API.
This JavaBean provides public methods to create and manipulate e-mail via Java programs.

3.2.4.2 Subsystem Architecture: SMTP Server

The e-mail framework requires that the framework have access to a SMTP server. SMTP is the
protocol that most Internet vendors implement to send e-mails across the Internet. The SMTP
server is the workhorse that the e-mail framework will connect to and forward e-mails that SFA
applications produce. Once the SMTP server has received the e-mail, it will connect to its
forwarding partner (another SMTP server) and forward the e-mail to the Internet. Currently, the
e-mail framework uses the SMTP Server that exists on the WebSphere servers.

3.2.4.3 Subsystem Architecture: JavaMail 1.2 API

The e-mail framework provides wrapper classes that are based on Sun Microsystems JavaMail 1.2
API. The JavaMail 1.2 API offers a clean, object-oriented framework of classes that model a
theoretical mail system. The JavaMail 1.2 API can support a variety of protocols including SMTP,
POP, IMAP, and MIME protocols. Any Java based program can programmatically send and
receive e-mail through the JavaMail 1.2 API.

3.2.4.4 SubSystem Architecture: Java Activation Framework

The E-mail framework also depends on the Java Activation Framework. (JAF) The JavaMail API
leverages the capabilities for dealing with complex data types from the JAF, which is part of the
Glasgow JavaBeans specification. JAF provides Java with similar capabilities that plug-ins
provide for web browsers. The JAF allows for the querying and handling of multi-media data
types.

3.2.4.5 SubSystem Architecture: ITA Logging and Exception Handling Framework

The RCS logging and exception handling frameworks have been added to the e-mail framework
to enhance debugging and tracing abilities. This will aid the SFA application and operations
teams' ability to isolate problems that may occur within the framework.

3.2.5 Detailed System Design
3.2.5.1 SFASmtpClient JavaBean

The ITA E-mail framework includes a wrapper class that encapsulates the JavaMail API. This
wrapper provides a simplified interface to the Sun JavaMail API and allows easy creation and
manipulation of e-mail traffic. The SFASmtpClient JavaBean is aimed at supporting SMTP, which

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 32 of 146

is the predominate protocol for sending e-mail. Figure 1 below shows the interaction of a client
program and a SMTP server using the ITA E-mail framework.

Figure 1: Interaction of Client Program and SMTP Server using ITA E-mail framework

Real Time versus Batch E-mail Processing

The SFASmtpClient JavaBean can be used in two different scenarios. The first scenario involves a
user receiving an e-mail in real-time from a Web interface. An example of this is an SFA
employee nominating another SFA employee via a Web page and immediately receiving
confirmation e-mail after the completing the nomination form. Once the SFA employee submits
the nomination form, the application server processes the information, builds an e-mail, and
sends the e-mail immediately.

The second scenario involves an example like a monthly newsletter that is sent out to a group of
users on a periodic basis. This scenario needs a scheduler agent that kicks off a command line
Java program that interfaces with the RCS e-mail framework and builds batch sets of e-mails.
This scenario uses the same e-mail framework as the real-time scenario, but is not processed
through the application server. With this scenario a newsletter can be sent to hundreds of
recipients on a scheduled basis.

Both solutions use the Java-based RCS e-mail framework and leverage the RCS logging and
exception handling frameworks. It's important that a common interface is used between the
command line batch and application server real time for support and maintenance reasons of e-
mail capability.

Client
Program

E-mail
Framework

JavaMail 1.2 API SMTP
Server

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 33 of 146

3.2.5.2 Component Definitions

SFASmtpClient Class

Interface Name: SFASmtpClient
Component: e-mail
Description: An e-mail class that verifies proper attributes is configured and simplifies the API

interface before submitting e-mail to the Sun JavaMail API.
Package: gov.ed.sfa.ita.email
Superclass: None

Attribute Type Description

Private:
hostname String holds the SMTP server hostname
HoldContent; String holds Text Content
HoldDebug boolean holds Debug Value
HoldFa String[] Holds array of names of Attached Files
HoldMp MimeBodyPart[] Holds MimeBody
HoldSentDate Date Holds current Date
HoldSubject String Holds Subject Line
HoldIAToAddress javax.mail.internet.IneternetAddress[] Holds an array of "To Addresses"
HoldIAFromAddress javax.mail.internet.IneternetAddress
HoldIARTA javax.mail.internet.IneternetAddress[] Holds an array of "Reply To Address's"

Con/Destructor Arguments

(Type, Name)
Description

SFASmtpClient none Constructor to build E-mail Session

Method Arguments

(Type, Name)

Valid Responses
(Return Type,
Exceptions Thrown)

Description

Public:
setHost string host void Set SMTP Hostname
getHost none string Get Smtp Hostname
setTextContent String content void Setter for TextContent

getTextContent none String Getter for Text Content
setMimeParts MimeBodyPart mimeParts[] void Setter for

mimeparts(MimeBodyPart[])
getMimeParts none MimeBodyPart[] Getter for mimeparts

setFileAttachments String files[] void Setter for FileAttachment
names(String [])

setFileAttachments String filename void Setter for FileAttachment
Names(String)

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 34 of 146

Method Arguments
(Type, Name)

Valid Responses
(Return Type,
Exceptions Thrown)

Description

getFileAttachments none String[] getter for File Attachments
setDebug boolean debug void Setter for trace mode
getDebug none boolean Getter for trace mode
setSentDate Date sentDate void Setter for SendDate
getSentDate none Date Getter for Sent Date
isOk none boolean Validation that required

parameters are set
sendMessage String from, String to, String

rta, String Subj
MessagingException,
AddressException

Method to interface with
JavaMail to send message

sendMessage String from[], String to[],
String rta[], String Subj

MessagingException,
AddressException

Method to interface with
JavaMail to send message

sendMessage String from, InternetAddress
to[], InternetAddress rta[],
String Subj

MessagingException,
AddressException

Method to interface with
JavaMail to send message

MakeItIA String whatever InternetAddress Utility method to translate
String to a
javax.mail.internet.InternetAd
dress

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 35 of 146

3.2.6 Class Diagrams

SFASmtpClient

hostname : string
HoldSubject : java.lang.String
HoldSentDate : java.util.Date
HoldContent : java.lang.String
HoldFa[] : java.lang.String
HoldMp[] : javax.mail.internet.MimeBodyPart
HoldIARTA[] : javax.mail.internet.InternetAddress
HoldIAToAddress[] : javax.mail.internet.InternetAddress
HoldDebug : boolean
HoldIAFromAddress

SFASmtpClient()
setHost(host : String) : void
getHost() : String
setTextContent(content : String) : void
getTextContent() : String
setMimeParts(mimeParts[] : MimeBodyPart) : void
getMimeParts() : MimeBodyPart[]
setFileAttachments(files[] : String) : void
getFileAttachments() : String[]
setDebug(debug : boolean) : void
getDebug() : boolean
setSentDate(sentDate : Date) : void
getSentDate() : Date
isOK() : boolean
sendMessage(from : java.lang.String, to : java.lang.String, rta : java.lang.String, Subj : java.lang.String) : void
sendMessage(from[] : java.lang.String, to[] : java.lang.String, rta[] : java.lang.String, Subj : java.lang.String) : void
sendMessage(from : javax.mail.internet.InternetAddress, to[] : javax.mail.internet.InternetAddress, rta[] : javax.mail.internet.InternetAddress, Subj : java.lang.String)
MakeItIA(whatever : java.lang.String) : javax.mail.internet.InternetAddress
MakeItIA(whatever[] : java.lang.String) : javax.mail.internet.InternetAddress
setFileAttachments(files : java.lang.String) : void

(from email)
SFASmtpClient

hostname : string
HoldSubject : java.lang.String
HoldSentDate : java.util.Date
HoldContent : java.lang.String
HoldFa[] : java.lang.String
HoldMp[] : javax.mail.internet.MimeBodyPart
HoldIARTA[] : javax.mail.internet.InternetAddress
HoldIAToAddress[] : javax.mail.internet.InternetAddress
HoldDebug : boolean
HoldIAFromAddress

SFASmtpClient()
setHost(host : String) : void
getHost() : String
setTextContent(content : String) : void
getTextContent() : String
setMimeParts(mimeParts[] : MimeBodyPart) : void
getMimeParts() : MimeBodyPart[]
setFileAttachments(files[] : String) : void
getFileAttachments() : String[]
setDebug(debug : boolean) : void
getDebug() : boolean
setSentDate(sentDate : Date) : void
getSentDate() : Date
isOK() : boolean
sendMessage(from : java.lang.String, to : java.lang.String, rta : java.lang.String, Subj : java.lang.String) : void
sendMessage(from[] : java.lang.String, to[] : java.lang.String, rta[] : java.lang.String, Subj : java.lang.String) : void
sendMessage(from : javax.mail.internet.InternetAddress, to[] : javax.mail.internet.InternetAddress, rta[] : javax.mail.internet.InternetAddress, Subj : java.lang.String)
MakeItIA(whatever : java.lang.String) : javax.mail.internet.InternetAddress
MakeItIA(whatever[] : java.lang.String) : javax.mail.internet.InternetAddress
setFileAttachments(files : java.lang.String) : void

(from email)

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 36 of 146

3.2.7 Interaction Diagrams
This sequence illustrates the interaction between a client object and SFASmtpClient class to build
and send an e-mail to a SMTP Server

 : SFASmtpClient : Transport : Session : InternetAddress : Message

1. - 2. Setup an Instance of
SMTPClient.

Client

1: SFASmtpClient()

5. Private method makes all
addresses of Internet Class

3: sendMessage(java.lang.String, java.lang.String, java.lang.String, java.lang.String)

3. Call SendMessage with
from, to, reply to address and
subject as arguments.

4. Private method IsOK
checks validity of email to
ensure delivery

6. Send the Message.
Establish contact with
SMTP Server.

7. – 10. Build Email using
the javax.mail.Message
Class.

11. Call transport to
send the email.

4: isOK()

5: MakeItIA(java.lang.String)

2: setHost(String)

6: getDefaultInstance(Properties)

7: setFrom(Address)
8: setRecipient(RecipientType, Address)

9: setReplyTo(Address[])
10: setContent(Multipart)

11: send(Message)

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 37 of 146

3.2.8 References
• Java Activation Framework JavaDocs online

http://java.sun.com/products/javabeans/glasgow/javadocs

• JavaMail 1.2 JavaDocs Online
http://www.javasoft.com/products/javamail/1.2/docs/javadocs/index.html

• Jnet JavaBean Store
http://www.java-shop.com/jnet.htm

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 38 of 146

3.3 Exception Handling

3.3.1 Introduction
The exception handling framework will allow all SFA WebSphere-based applications to share
standard error handling and error logging procedures. The framework will also enable
applications to throw a common, unified set of exceptions.

The purpose of exception handling is to catch problems in a program that would otherwise lead
to program error and failure conditions. An error in Java is an unrecoverable abnormal
condition. For example, an error can occur when a networking connection is unexpectedly cut or
the JVM runs out of memory.

An exception is an event that occurs during the execution of a program that disrupts the normal
flow of instructions. An example is passing a null value to a method that expects a valid String
object reference. Exceptions can be prevented from becoming an error through correct
programming.

The RCS exception handling framework exists to provide a mechanism by which client
programmers may be able to trap exceptional conditions within their code. The benefits of
having a framework to handle exceptions are to minimize duplicated effort and save time for
programmers during both development and maintenance of the application.

3.3.2 System Overview
Despite Java’s superior support for exception handling, most applications benefit significantly
from the creation of their own application-specific exceptions and handlers. It is usually helpful
to catch Java’s exceptions, then create and throw application-specific exceptions. These custom
exceptions can contain detailed messages or even nested exceptions, which can help simplify the
debugging process. The RCS exception handling framework defines the base class for SFA
exceptions, provides a factory to ensure exceptions are generated correctly, and allows for
integration into the logging framework through a trace object.

The exception handling framework functions within the general exception handling framework
that is built into the Java language. When an exception is thrown, the following steps must take
place for it to be handled properly:

• Within a try-catch block, an exceptional condition is generated

• The Exception object is created and the current path of execution is interrupted

• The exception handling mechanism completes execution of the program

• The mechanism finds the appropriate handler for the given exception

• Information about the exception is read from the exception object

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 39 of 146

• Based on what is determined about the exception, the handler acts appropriately to either:

o Remediate the exceptional condition and return the program to an operational
state, or

o Release resources used by the application and exit gracefully

With the exception handling framework, exceptions are handled as they traditionally are in Java,
but they can be handled in a more consistent and robust manner, with detailed troubleshooting
messages and advanced logging capability.

3.3.3 Design Considerations
3.3.3.1 Assumptions and Dependencies

It is assumed that this framework will function in a J2EE application server environment. As the
current production server for SFA is IBM WebSphere 3.5, the framework will be compiled using
its required JDK version 1.2.2. It should also work with the current JavaServer Pages (1.1), Java
Servlet (2.2), Java Messaging Service (1.0.1), and Java Database Connectivity (2.0) specifications
for this server.

3.3.3.2 Goals and Guidelines

The exception handling framework will provide a simple yet useful framework that can easily be
utilized by any SFA development team building applications in Java, or more specifically
WebSphere (although there is nothing in this package that ties it to WebSphere). The three things
this framework is intended to provide is consistency in approach, standardization of error
messages, and out-of-the-box integration with the logging framework.

Error handling is an important piece of any development effort, and a standardized framework
should go a long way towards easing this coding burden on application programmers.

3.3.3.3 Development Methods

This framework was developed using general object-oriented software development techniques
as are specified in any standard text on the Java programming language. As the framework itself
is fairly straightforward in its class and relationship patterns it employs, no object oriented
modeling tool or methodology was specifically used in its design. However, the resulting source
code has been documented with standard class diagrams and sequence diagrams in order to
illustrate its structure more readily. These diagrams should be of great help to programmers
unfamiliar with this framework.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 40 of 146

3.3.4 System Architecture
3.3.4.1 Overview

The exception handling framework enhances the ability of an application to define and trap
errors that may arise as the application executes. The exception handling framework includes
several key components:

• SFAExceptionFactory

• SFAException

• SFATrace

These components will be described individually in the detailed system design.

The exception handling framework provided by Java is very generic. It gives very generic
messages to the developer, which makes it difficult to find the actual cause of the exception.
Because of this, a custom framework for exception handling can be of great benefit to a
development effort. With a custom exception handling framework, individual exceptions can be
identified and handled on a case-by-case basis.

3.3.5 Detailed System Design
3.3.5.1 Component Overview

The exception handling framework consists of a set of classes that are designed to encapsulate
the information pertaining to different errors that may occur within the system.

The Java Exception class is extended from the Throwable class, which is extended from the
Object class. SFAException, in turn, is extended from the Exception class. A class diagram
indicating the inheritance tree can be found in Section 6.

The SFAException class is the base exception, which can be customized on an application by
application basis. This class has three private attributes: uniqueId, errorCode, and arguments.
Each private attribute has corresponding public set() and get() methods.

The SFAExceptionFactory is the class used to create exceptions. It should work in any
application without modifications. This class is designed to operate to work as a Singleton (i.e.,
there is only one instance of it per VM or at least per classloader). It contains some exception-
centered utility methods, such as getHostId(), which can be used to uniquely identify an
exception as belonging to a specific machine. It also has a generic logException() method that can
write out exception information to System.err.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 41 of 146

The SFATrace object is extended from SFAException and is used to mirror an exception with the
additional feature of dumping its information to the logging framework for processing. This
component greatly extends the reporting capabilities of the exception handling framework over
standard exception handling.

The SFAException class contains a set of generic error codes to serve as a starting point. Each
project should spend time early on in the development cycle to define a list of error codes
encompassing all potential error conditions their application may encounter.

With the exception codes, a list of exception messages should be supplied in an
errorMessages.properties resource file. The message number in the resource file corresponds to
the message constant defined in the customized SFAException handling class.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 42 of 146

3.3.5.2 Component Definitions

SFAException Class

Class Name: SFAException

Component: Exception

Description: SFAException is the generic exception class.

Package: gov.ed.sfa.ita.exception

Superclass: java.lang.Exception

Attribute Type Description

Private:

uniqueId java.lang.String Holds the uniqueId for the error.

errorCode long Holds the errorCode number.

arguments java.lang.Object[] Holds any arguments specified for the error.

Public:

BAD_DATE_FORMAT static long Pre-defined sample error code.

BAD_PROPERTY_FORMAT static long Pre-defined sample error code.

DATA_ACCESS_EXCEPTION static long Pre-defined sample error code.

EJB_HOME_TYPE_MISMATCH static long Pre-defined sample error code.

ERROR_CREATING_BEAN static long Pre-defined sample error code.

ERROR_LOADING_PROPERTY_FILE static long Pre-defined sample error code.

ERROR_OPENING_QUEUE static long Pre-defined sample error code.

ERROR_READING_QUEUE_MSG static long Pre-defined sample error code.

ERROR_SENDING_QUEUE_MSG static long Pre-defined sample error code.

GENERIC_SERVLET_ERROR static long Pre-defined sample error code.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 43 of 146

Attribute Type Description

INSTANTIATION_EXCEPTION static long Pre-defined sample error code.

INVALID_BUSINESS_REQUEST static long Pre-defined sample error code.

INVALID_FIELD_CONTENTS static long Pre-defined sample error code.

INVALID_HOME_INTERFACE static long Pre-defined sample error code.

INVALID_MSG_CLASS static long Pre-defined sample error code.

JNDI_INIT_ERROR static long Pre-defined sample error code.

JNDI_LOOKUP_ERROR static long Pre-defined sample error code.

METHOD_NOT_IMPLEMENTED static long Pre-defined sample error code.

MISSING_CLASS static long Pre-defined sample error code.

MISSING_CREATE_METHOD static long Pre-defined sample error code.

MISSING_PROPERTY static long Pre-defined sample error code.

NEW_INSTANCE_FAILED static long Pre-defined sample error code.

QUEUE_COMMUNICATION_ERROR static long Pre-defined sample error code.

RECEIVED_ERROR_REPLY static long Pre-defined sample error code.

SQL_EXCEPTION static long Pre-defined sample error code.

TIMEOUT static long Pre-defined sample error code.

UNEXPECTED_EXCEPTION static long Pre-defined sample error code.

UNKNOWN_MSG_CLASS static long Pre-defined sample error code.

UNKNOWN_MSG_TYPE static long Pre-defined sample error code.

WRONG_ARGUMENT_TYPE static long Pre-defined sample error code.

Con/Destructor Arguments

(Type, Name)

Description

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 44 of 146

Con/Destructor Arguments

(Type, Name)

Description

SFAException Generic constructor.

SFAException java.lang.String s Constructor that sets a specified error message.

Method Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions Thrown)

Description

Public:

getArguments java.lang.Object[] Gets the arguments for
this Exception.

getErrorCode long Gets the error code for
this Exception.

getUniqueId java.lang.String Gets the unique id for this
Exception.

setArguments java.lang.Object[] void Sets the arguments for
this Exception.

setErrorCode long void Sets the error code for this
Exception.

setUniqueId java.lang.String void Sets the unique id for this
Exception.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 45 of 146

SFAExceptionFactory Class

Class Name: SFAExceptionFactory

Component: Exception

Description: The SFAExceptionFactory class is used to create SFAException objects.

Package: gov.ed.sfa.ita.exception

Superclass: None

Attribute Type Description

Private:

instance SFAExceptionFactory Internal reference to itself - class is a singleton.

counter int Counter to generate unique ids.

uniqueFactoryCode long Stores the system time it was created as part of the
unique id.

hostId java.lang.String Stores the host id.

errorMessages java.util.ResourceBundle The error messages file is loaded into this object.

Public:

dateFormat java.text.SimpleDateFormat Stores format for dates.

Con/Destructor Arguments

(Type, Name)

Description

SFAExceptionFactory Generic Constructor.

Method Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions Thrown)

Description

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 46 of 146

Method Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions Thrown)

Description

Private:

generateUniqueId java.lang.String Generates a unique id for
the exception.

Public:

createException java.lang.Class classDef,

long errorCode,
java.lang.Object[] arguments,
java.lang.Throwable
previousException,
java.lang.String className,
java.lang.String methodName,
java.lang.String additionalInfo

SFAException Generates an
SFAException object.

getHostId java.lang.String

getInstance() SFAExceptionFactory Accessor for the singleton
object.

getMessage SFAException exception java.lang.String Gets the error message
associated with the
exception.

handleUnexpectedException java.lang.Throwable
previousException,
java.lang.String className,
java.lang.String methodName,
java.lang.String additionalInfo

SFAException Returns an exception
associated with a caught
Throwable object.

logException SFAException exception,
java.lang.Throwable
previousException,
java.lang.String className,
java.lang.String methodName,
java.lang.String additionalInfo

void Logs the exception,
writing an XML string to
standard error.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 47 of 146

SFATrace Class

Class Name: SFATrace

Component: Exception

Description: The SFATrace class provides interoperability with the ITA Logging Framework.

Package: gov.ed.sfa.ita.exception

Superclass: SFAException

Attribute Type Description

Private:

none

Protected:

none

Public:

none

Con/Destructor Arguments

(Type, Name)

Description

SFATrace java.lang.Object obj,

java.lang.String msg

Constructor for the trace object, which takes an
SFAException and additional error message text.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 48 of 146

Method Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions Thrown)

Description

Private:

none

Protected:

none

Public:

getTrace java.lang.String Gets a formatted trace
message.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 49 of 146

3.3.6 Class Diagrams

SFAException

errorCode : long
UNEXPECTED_EXCEPTION : long = 0
MISSING_PROPERTY : long = 1
BAD_PROPERTY_FORMAT : long = 2
ERROR_LOADING_PROPERTY_FILE : long = 3
NEW_INSTANCE_FAILED : long = 4
JNDI_INIT_ERROR : long = 5
INVALID_HOME_INTERFACE : long = 6
JNDI_LOOKUP_ERROR : long = 7
EJB_HOME_TYPE_MISMATCH : long = 8
MISSING_CREATE_METHOD : long = 9
ERROR_CREATING_BEAN : long = 10
BAD_DATE_FORMAT : long = 11
INVALID_FIELD_CONTENTS : long = 12
DATA_ACCESS_EXCEPTION : long = 13
SQL_EXCEPTION : long = 14
WRONG_ARGUMENT_TYPE : long = 20
METHOD_NOT_IMPLEMENTED : long = 21
INSTANTIATION_EXCEPTION : long = 22
MISSING_CLASS : long = 23
INVALID_BUSINESS_REQUEST : long = 27
GENERIC_SERVLET_ERROR : long = 35
ERROR_OPENING_QUEUE : long = 100
ERROR_SENDING_QUEUE_MSG : long = 101
ERROR_READING_QUEUE_MSG : long = 102
RECEIVED_ERROR_REPLY : long = 104
UNKNOWN_MSG_TYPE : long = 105
UNKNOWN_MSG_CLASS : long = 106
INVALID_MSG_CLASS : long = 107
TIMEOUT : long = 108
QUEUE_COMMUNICATION_ERROR : long = 109

SFAException()
SFAException()
getArguments()
getErrorCode()
getUniqueId()
setArguments()
setErrorCode()
setUniqueId()

(from exception)

SFAExceptionFactory

counter : int = 0
uniqueFactoryCode : long = System.currentTimeMillis()

SFAExceptionFactory()
createException()
generateUniqueId()
getHostId()
getInstance()
getMessage()
handleUnexpectedException()
logException()

(from exception)

+instance

SFATrace

SFATrace()
getTrace()

(from excepti...

Exception

Exception()
Exception()

(from lang)

Throwable

Throwable()
Throwable()
fillInStackTrace()
getLocalizedMessage()
getMessage()
printStackTrace()
printStackTrace()
printStackTrace()
toString()

(from lang)

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 50 of 146

3.3.7 Interaction Diagrams
This sequence diagram illustrates the main object interactions involved in basic exception
handling from client code. The client code must first obtain a reference to an instance of the
SFAExceptionFactory. It then uses the factory to create SFAExceptions as needed, identifying the
id, error code, and arguments (if any). Should the error need to be logged, it can be passed to the
constructor of an SFATrace object, where logging is done as soon as the object is instantiated.

 : Client Code : SFAExceptionFactory : SFAException : SFATrace

getInstance()

createException(Class, long, Object[], Throwable, String, String, String)

setUniqueId(jav a.lang.String)

setErrorCode(long)

setArguments(jav a.lang.Object[])

SFATrace(Object, String)

1. Obtain a ref erence to an
instance of the exception
f actory object.

2. Create an exception f rom
the f actory , passing the
appropriate information about
the exception such as error
code and message.

3. The unique ID can also be
set af ter the exception is
created.

4. The error code can also
be set af ter the exception is
created.

5. The arguments can also
be set af ter the exception is
created.

6. If an exception needs
to be logged an SFATrace
object can be created f rom
it, which inv okes a logging
operation.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 51 of 146

3.3.8 References
• Java Tutorial on exception handling

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/exception.html

• JavaDoc on logging framework

http://protomatter.sourceforge.net/latest/javadoc/com/protomatter/syslog/package-
summary.html

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 52 of 146

3.4 Logging

3.4.1 Introduction
The ITA custom logging feature set is implemented using an SFA-customized version of the
Protomatter logging toolkit called Syslog. This toolkit is provided free for distribution through
the Open Source Software group, is licensed under the GNU Library General Public License
Version 2, and is free for both commercial and non-commercial use. Specific terms of the license
are available at http://www.gnu.org/copyleft/lgpl.html. While the code has only been
minimally modified from its initial state, it is hoped that the additional technical documentation
provided in this document will serve to aid developers should they need to troubleshoot or
modify this framework as it is implemented in SFA projects.

3.4.2 System Overview
The logging framework enhances the current logging ability of the ITA Web application servers
(specifically WebSphere), by allowing programmers to dynamically set logging and tracing
functionality without modifying tested source code. The logging framework also allows SFA to
develop and enforce log formatting standards to ensure proper information is gathered if a
failure occurs.

Syslog is a simple and robust logging system that is not tied to any specific application server.
Syslog provides the following features:

• Simple logging API

• Background logging (Configurable)

• Multiple message severities

• Logs the name of the thread that issued the message (Configurable)

• Logs the name of the host that issued the message (Configurable)

• Arbitrary log channel names

• Pluggable log message listeners

• Pluggable log formatting modules for each listener

• Pluggable log policy modules for each listener

• Configuration can be modified on-the-fly while the system is running

• A running configuration can be written to XML for re-load later

Syslog lets the programmer log messages easily through a simple API. During development and
testing, the messages may be simply sent to the console where the application is running or to a
single log file. When the system is moved into production, log messages can be split up by

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 53 of 146

severity (for example, fatal messages may trigger the paging of an operations support resource)
and log files may be rotated every night and archived. These kinds of configuration changes do
not require changes to the code and can even be made while the system is running.

3.4.3 Design Considerations
3.4.3.1 Assumptions and Dependencies

It is assumed that this framework will function in a J2EE application server environment. As the
current production server for SFA is IBM WebSphere v. 3.5, the framework will be compiled
using its required JDK version 1.2.2. It should also work with the current JavaServer Pages (1.1),
Java Servlet (2.2), Java Messaging Service (1.0.1), and Java Database Connectivity (2.0)
specifications for this server.

3.4.3.2 Goals and Guidelines

The goal of this development was to provide a simple yet robust logging framework that could
easily be utilized by any SFA development team building applications in Java, or more
specifically WebSphere (although there is nothing in this package that ties it to WebSphere). An
important part of any project, logging can be used as a debugging tool during development, and
a troubleshooting tool once a system has been deployed in a production environment. Because
most developers only implement logging as time permits, it is often implemented haphazardly.
However, logging provides a way to see what is happening, good or bad, inside a running
system. As such, it should be addressed with care and forethought rather than as a last minute
burden.

3.4.3.3 Development Methods

This framework was developed using general object-oriented software development techniques
as are specified in any standard text on the Java programming language. As the framework itself
is fairly straightforward in its class and relationship patterns it employs, no object oriented
modeling tool or methodology was specifically used in its design. However, the resulting source
code has been documented with standard class diagrams and sequence diagrams in order to
illustrate its structure more readily. These diagrams should be helpful to programmers
unfamiliar with this framework.

3.4.4 System Architecture
3.4.4.1 Overview

The logging framework enhances the ability of an application to support personal or developer
messages that can determine if a problem exists within an application. The logging framework
includes the following key components:

• Loggers

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 54 of 146

• Filters

• Formatters

• Policy

• Channels

These objects can be configured in several ways to efficiently direct log output to multiple
destinations with differing content and format. The logging framework can be configured
programmatically or via some configuration file allowing support personal to enhance a logger’s
visibility by just changing a configuration file.

3.4.4.2 Subsystem Architecture: Loggers

Loggers listen for log messages from applications and provide methods that allow programmers
to log messages via a simple API. Loggers have attributes that determine how a message is
formatted, whether a message has visibility to the entire system or just one file, as well as
whether a message is immediately flushed or buffered. Loggers represent the heart of the ITA
logging framework and should be the considered when detailing an application design.

3.4.4.3 Subsystem Architecture: Filters

Each logger in the Logging Framework has a log mask and each message has a severity. A
masking of these two values determines whether the Logger allows the message to continue to
the destination. The severities allowed within a message are:

• DEBUG - These are debugging messages usually placed by the programmers for
the tracing and debugging purposes.

• INFO - These are useful informational messages about what is occurring.

• WARNING - These messages warn that something abnormal has happened, but
that the system will attempt to recover from it. These messages are usually used by
programmers to show that something is starting to go wrong.

• ERROR - These messages state that something abnormal has occurred, but that it is
not severe enough to cause the system to fail in general. A specific task may fail and some
users may get an error, but the system will keep going. Exceptions are generally logged at
this level.

• FATAL - These messages inform that a fatal event has occurred. The system is
probably now in a non functioning state. Someone should be paged.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 55 of 146

It is important to actually use the different severity levels where they are appropriate. For
example, if every message in the system is logged at the "debug" level, the operations team will
be unable to judge the severity of the message.

Example 1

For example, if a Loggers log mask is set to INFO, then any message that comes in with a severity
that is below INFO will be sent on to the destination. A message that has severity DEBUG will be
ignored. With this Log Mask and Logger configuration, all info, warning, error, and fatal
messages will show up at the destination. This is illustrated in Figure 2 below.

Figure 2: Example 1

Example 2

If the Log Mask is set to Fatal, like in Figure 3 below, then only Fatal messages show up at the
destination.

Figure 3: Example 2

INFO Log Mask

DEBUG

WARNING

ERROR

FATAL

V
i
s
i
b
i
l
i
t
y

INFO

Log Mask

DEBUG

WARNING

ERROR

FATAL

V
i
s
i
b
i
l
i
t
y

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 56 of 146

Example 3

This concept can be extended so that two or more loggers can be used to send info and below
messages to the console but fatal messages go to a log file. This is illustrated in Figure 4 below.

Figure 4: Example 3

3.4.4.4 Subsystem Architecture: Formatters

Formatters ensure that data submitted to Loggers will follow certain logging standards to ensure
complete information. Formatters can be set to ensure that the current time and date are part of
the log message. They also can specify the threadname, hostname, and time zone. An
illustration of this is found in Figure 5 below.

Figure 5: Formatters

3.4.4.5 Subsystem Architecture: Policy

Policies are rules combinations that developers can build using the ITA Logging framework.
Application developers can develop several standard log policies that may encompass filters,
severity and format requirements. Once the policies are developed then these policies are
attached to the loggers.

Log

File

Loggers Fatal Only Info & Below

Console

Loggers Formatter 10:00:00 04/11 [INFO] LoggingTest.class This is a Message

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 57 of 146

3.4.4.6 Subsystem Architecture: Channels

The ITA Logging framework supports Log Channels. The idea is that some messages might need
to be sent to multiple loggers. For example if a Java Application server supports multiple
applications and each application has its own logger, then each logger might listen to a common
channel for system wide messages. By default each logger listens to the channel
“ALL_CHANNELS” and if a channel isn’t specified then a logger will listen to Channel
“DEFAULT_CHANNEL”. An illustration of this is found in Figure 6 below.

Figure 6: Channels

3.4.4.7 Subsystem Architecture: Configuration Mechanism

The RCS logging framework loggers can be set up within the application via API calls to the
framework or read from a XML based document. The XML based document is a much better
choice due to the fact that it permits changing the logger attributes by changing the XML
document. The XML document will be read upon startup of the framework and initiate the
loggers. If a change needs to occur to a logger, then the XML document is updated and the
framework reinitialized.

3.4.4.8 Subsystem Architecture: Message Catalog

The logging framework can include a message catalog that will contain standard text messages
that are expected to be used by the application. This message catalog is actually backed by a text
properties file and read into the framework using the java.util.ResourceBundle class. This allows
a developer to standardize messages and use a simple variable to substitute for complex text
messages. The properties file uses a format of key=value

Contents of an errormessage.properties file example

PING_TIMEOUT=”THE SYSTEM IS NOT RESPONDING TO A PING”
MISSING_CLASS=”A CLASS IS MISSING”

Application
Channel Foo

Log File

Log File Logger

Logger

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 58 of 146

3.4.4.9 Subsystem Architecture: Smart Trace (Debug) Object

The logging framework includes a smart Debug class that produces a stack trace if the logger is
enabled for it.

3.4.5 Detailed System Design
3.4.5.1 Component Overview

The Syslog class is a singleton (i.e. there is only one instance of it per VM or at least per
classloader). It contains all configuration information related to where messages are routed, who
is listening for those messages, etc. If it has been configured to log messages in the background
(default) then Syslog maintains a slave thread that performs the actual logging. This is done so
that calls to any of the logging methods return as quickly as possible and any extra work (writing
to files) is done asynchronously.

Syslog maintains a list of loggers. Loggers listen to log messages being submitted. Each of these
loggers is described in the next section of this document. These loggers implement the Syslogger
interface -- mainly the log(SyslogMessage message) method that is called every time a message is
sent to Syslog. Once the log() method is called on the Syslogger it decides if the message should
be written to a file or console etc.

The Syslog class allows a program to log messages and objects at different severity levels in a
standardized way. The implementation of the log is specified by an object that implements the
Syslogger interface. There can be multiple log implementations, and each can have its own log
mask or can inherit its log mask from Syslog (this is the default behavior). There are five severity
levels: DEBUG, INFO, WARNING, ERROR, FATAL. They correspond to the numbers
(constants) 0, 4, 8, 12, and 16, respectively. Logging can be enabled for any combination of these
levels. The default setting for log is only WARNING and above.

There are several loggers included with the Syslog distribution. Each of these loggers extends
BasicLogger and supports pluggable log policies. All of them except for the DatabaseLog
support pluggable text formatting modules. These loggers are described below:

• PrintWriterLog: A logger that is attached to an instance of java.io.PrintWriter. This logger
is generally attached to either System.out or System.err at runtime.

• TimeRolloverLog: A logger that writes to a file that is rotated every minute, hour, day or
month.

• LengthRolloverLog: A logger that writes to a file that is rotated before it reaches a certain
length.

• FileLog: A logger that simply writes to a file.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 59 of 146

• OpenFileLog: A logger that writes to a file. The file is opened before and closed after each
message is written. This is a very slow logger and should not be used unless there is a
reason that justifies its use.

• DatabaseLog: A logger that writes messages to a table in a database. This is useful in
situations where there are multiple machines involved in a project and there is need to
have a unified view of everything happening on all the machines.

The default implementation of the Syslogger interface is the BasicLogger abstract class. This is
the base class for all the loggers that are included with Syslog. The BasicLogger delegates the
decision about paying attention to a given message to an implementation of the LogPolicy
interface. The default implementation of the LogPolicy interface is the SimpleLogPolicy class.
This policy knows about log message severity levels and about log. The BasicLogger also
delegates its message formatting duties to an implementation of the SyslogTextFormatter
interface. The default implementation of this interface is the SimpleSyslogTextFormatter class,
which can be configured to format log messages in various ways.

If Syslog needs to be configured from inside another server or application, the Syslog.configure()
method can be used. It will configure Syslog from an XML file. Syslog can also be configured
programmatically.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 60 of 146

3.4.5.2 Component Definitions

Component Name: JMSConstants
Classification: Java Public Interface
Definition: Constants for JMS-related Syslog functions.
Uses/Interactions: Implemented by JMSLog
Interfaces/Exports:
Data

static java.lang.String JMS_PROP_CHANNEL The message property of the message channel.

static java.lang.String JMS_PROP_HOST The message property of the originating host's IP address.

static java.lang.String JMS_PROP_LEVEL The message property of the message's severity level.

static java.lang.String JMS_PROP_LOGGER The message property of the message logger's class name.

static java.lang.String JMS_PROP_MESSAGE The message property of the message's short text.

static java.lang.String JMS_PROP_MSG_TYPE The message property declaring that the given JMS message
is a syslog message.

static java.lang.String JMS_PROP_MSG_TYPE_VALUE The value of the message property declaring that
the given JMS message is a syslog message.

static java.lang.String JMS_PROP_THREAD The message property of the originating thread's name.

static java.lang.String JMS_PROP_TIME The message property of the message send time.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 61 of 146

Component Name: LogPolicy
Classification: Java Public Interface
Definition: The interface for the pluggable log policy system.
Uses/Interactions: Extends XMLConfigurable

Implemented by SimpleLogPolicy
Interfaces/Exports:

Method Summary

boolean shouldLog(SyslogMessage message) Determine if a log message should be logged given the
information.

Methods inherited from interface com.protomatter.xml.XMLConfigurable

configure, getConfiguration

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 62 of 146

Component Name: RemoteLogReceiver
Classification: Java Public Interface
Definition: An interface for loggers that are receiving messages from a remote machine

via RMI.
Uses/Interactions: Extends java.rmi.Remote

Implemented by RemoteLogReceiverImpl
Interfaces/Exports:
Method Summary

void log(java.lang.String ipAddress, java.lang.String loggerClass, java.lang.String
channel, java.lang.String message, java.lang.Object detail, int level,
java.lang.String threadName, long messageSendTime) Log callback method.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 63 of 146

Component Name: SyslogChannelAware
Classification: Java Public Interface
Definition: An interface for objects that are aware of channels in syslog.
Uses/Interactions: Implemented by JdbcConnectionPool

Implemented by JdbcConnectionPoolConnection
Implemented by ProtoEJB

Interfaces/Exports:
Method Summary

java.lang.Object getSyslogChannel() This method should return the channel that messages
coming from this object should be logged to if the call to Syslog didn't include a
channel (or the channel specified was null).

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 64 of 146

Component Name: Syslogger
Classification: Java Public Interface
Definition: An interface for objects that will log things using the Syslog facility.
Uses/Interactions: Extends XMLConfigurable

Implemented by BasicLogger
Interfaces/Exports:
Method Summary

java.lang.String getName() Get the name of this logger.

LogPolicy getPolicy() Get the log policy object used by this logger.

SyslogTextFormatter getTextFormatter() Get the log formatter object used by this logger.

void log(SyslogMessage message) Log an entry to the log.

boolean mightLog(java.lang.Object logger, int level, java.lang.String
channel) Determine if it's likely that a message at the given level on the given
channel(s) will be logged.

void setName(java.lang.String name) Set the name of this logger.

void setPolicy(LogPolicy policy) Set the log policy object used by this logger.

void setTextFormatter(SyslogTextFormatter formatter) Set the log
formatter object used by this logger.

void shutdown() Shutdown this logger.

Methods inherited from interface com.protomatter.xml.XMLConfigurable

configure, getConfiguration

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 65 of 146

Component Name: SyslogMailSubjectFormatter
Classification: Java Public Interface
Definition: The interface for the pluggable message formatting system. It is used to

format message subjects for the MailLog logger.
Uses/Interactions: Extends XMLConfigurable

Implemented by SimpleSyslogMailSubjectFormatter
Interfaces/Exports:
Method Summary

java.lang.String formatMessageSubject(SyslogMessage message)
Format the message subject given the log entry.

Methods inherited from interface com.protomatter.xml.XMLConfigurable

configure, getConfiguration

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 66 of 146

Component Name: SyslogTextFormatter
Classification: Java Public Interface
Definition: The interface for the pluggable text formatting system. It is used to format

log entries by subclasses of the BasicLogger logger.
Uses/Interactions: Extends XMLConfigurable

Implemented by SimpleSyslogTextFormatter
Interfaces/Exports:
Method Summary

void formatLogEntry(java.lang.StringBuffer b, SyslogMessage message) Format
the given log entry.

void formatMessageDetail(java.lang.StringBuffer b, SyslogMessage message)
Format the given log message's detail.

java.lang.String getLogFooter() Get the footer text that should be included at the bottom of each log file.

java.lang.String getLogHeader() Get the header text that should be included at the top of each log file.

void resetDateFormat() Reset the formatter's date format.

Methods inherited from interface com.protomatter.xml.XMLConfigurable

configure, getConfiguration

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 67 of 146

Component Name: BasicLogger
Classification: Java Public Class
Definition: The base class for Syslogger implementations. This class provides common

functions for setting the date format for log entries and for formatting
dates. The default policy used by this logger is the SimpleLogPolicy policy.
The default text formatter is the SimpleSyslogTextFormatter formatter.

Uses/Interactions: Implements the Syslogger interface
Extended by DatabaseLog
Extended by FileLog
Extended by JMSLog
Extended by LengthRolloverLog
Extended by MailLog
Extended by OpenFileLog
Extended by PrintWriterLog
Extended by RemoteLog
Extended by TimeRolloverLog

Interfaces/Exports:
Field Summary

protected SyslogTextFormatter formatter

protected LogPolicy policy

Constructor Summary

BasicLogger() The default constructor -- configure() will need to be called.

Method Summary

protected void configure() Initialize with the default configuration.

void configure(org.jdom.Element e) Configure this logger given the XML element.

protected void formatLogEntry(java.lang.StringBuffer b, SyslogMessage message)
Format the log entry using the current log formatter.

org.jdom.Element getConfiguration(org.jdom.Element element) Get the current configuration
of this logger.

java.lang.String getName() Get this logger's name.

LogPolicy getPolicy() Get the log policy object used by this logger.

SyslogTextFormatter getTextFormatter() Get the log formatter object used by this logger.

boolean mightLog(java.lang.Object logger, int level, java.lang.String
channel) Determine if it's likely that a message from the given logger at the given

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 68 of 146

level on the given channel will be paid attention to.

protected void resetDateFormat() Reset the text formatter's date format.

void setName(java.lang.String name) Set this logger's name.

void setPolicy(LogPolicy policy) Set the log policy object used by this logger.

void setTextFormatter(SyslogTextFormatter formatter) Set the log formatter
object used by this logger.

protected boolean shouldLog(SyslogMessage message) A utility method to see if the current log
policy says we should pay attention to this message.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface com.protomatter.syslog.Syslogger

log, shutdown

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 69 of 146

Component Name: DatabaseLog
Classification: Java Public Class
Definition: A logger that writes to a database. See system JavaDocs for proper

database/configuration file setup needed to use this logger.
Uses/Interactions: Extends BasicLogger

Implements Syslogger (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Fields inherited from class com.protomatter.syslog.BasicLogger

formatter, policy

Constructor Summary

DatabaseLog() You will need to call the configure() method if you use this constructor.

Method Summary

void configure(org.jdom.Element e) Configure this logger given the XML
element.

org.jdom.Element getConfiguration(org.jdom.Element element) Get the current
configuration of this logger.

java.lang.String getDriver() Get the classname of the driver.

int getNumRetries() Get the number of retries before failure.

java.util.Properties getProperties() Get the JDBC connection properties.

java.lang.String getTablePrefix() Get the table prefix.

java.lang.String getURL() Get the JDBC URL.

void InitDatabase() (re)initialize the connection to the database.

void log(SyslogMessage message) Log an entry to the log.

protected void setDriver(java.lang.String driver) Set the driver to use.

protected void setNumRetries(int retries) Set the number of retries before failure.

protected void setProperties(java.util.Properties props) Set the JDBC connection
properties.

protected void
setTablePrefix(java.lang.String tablePrefix) Set the table prefix to
use.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 70 of 146

use.

protected void setURL(java.lang.String url) Set the JDBC URL.

void shutdown() Close the database connection and cleanup.

Methods inherited from class com.protomatter.syslog.BasicLogger

configure, formatLogEntry, getName, getPolicy, getTextFormatter, mightLog,
resetDateFormat, setName, setPolicy, setTextFormatter, shouldLog

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 71 of 146

Component Name: FileLog
Classification: Java Public Class
Definition: A logger that writes to a file.
Uses/Interactions: Extends BasicLogger

Implements Syslogger (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Constructor Summary

FileLog() You will need to call the configure() method if you use this constructor.

FileLog(java.io.File f) Create a new file log attached to the given file.

FileLog(java.io.File f, boolean append, boolean autoFlush) Create a new file
log attached to the given file.

Method Summary

void configure(org.jdom.Element e) Configure this logger given the XML element.

boolean getAppend() Get the file we're writing to.

boolean GetAutoFlush() Determine if we should we auto-flush the buffer all the time.

org.jdom.Element GetConfiguration(org.jdom.Element element) Get the current configuration of this
logger.

java.io.File getFile() Get the file we're writing to.

void log(SyslogMessage message) Log a message.

void setAppend(boolean append) Set the file we're writing to.

void SetAutoFlush(boolean flush) Should we auto-flush the buffer all the time?

void setFile(java.io.File f) Set the file we're writing to.

void shutdown() Closes down the file and prepares for shutdown.

Methods inherited from class com.protomatter.syslog.BasicLogger

configure, formatLogEntry, getName, getPolicy, getTextFormatter, mightLog, resetDateFormat,
setName, setPolicy, setTextFormatter, shouldLog

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 72 of 146

Component Name: HTMLSyslogTextFormatter
Classification: Java Public Class
Definition: A log entry formatter that produces HTML.
Uses/Interactions: Extends SimpleSyslogTextFormatter

Implements SyslogTextFormatter (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Constructor Summary

HTMLSyslogTextFormatter() Private constructor so nobody goes around creating these.

Method Summary

void configure(org.jdom.Element e) Configure this text formatter given the XML
element.

void formatLogEntry(java.lang.StringBuffer b, SyslogMessage message)
Format a log entry.

org.jdom.Element getConfiguration(org.jdom.Element element) Get this object's configuration
represented as an XML Element.

java.lang.String getLogFooter() Get the log footer.

java.lang.String getLogHeader() Get the log header.

protected char[] getStringForLevel(int level)

java.lang.String getStyleSheet() Get the style sheet being used.

void setStyleSheet(java.lang.String style sheet) Set the style sheet to use.

Methods inherited from class com.protomatter.syslog.SimpleSyslogTextFormatter

formatDate, formatMessageDetail, getDateFormat, getDateFormatCacheTime,
getDateFormatTimezone, getHostname, getNextException, getShowChannel, getShowHostName,
getShowThreadName, resetDateFormat, setDateFormat, setDateFormatCacheTime,
setDateFormatTimezone, setShowChannel, setShowHostName, setShowThreadName,
trimFromLastPeriod, trimFromLastPeriod

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 73 of 146

Component Name: JMSLog
Classification: Java Public Class
Definition: A logger that writes messages to JMS. The JMS session used has no

transaction attribute itself, so it will obey any JTS transaction context that is
currently active.

Uses/Interactions: Extends BasicLogger
Implements JMSConstants
Implements Syslogger (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Fields inherited from class com.protomatter.syslog.BasicLogger

formatter, policy

Fields inherited from interface com.protomatter.syslog.JMSConstants

JMS_PROP_CHANNEL, JMS_PROP_HOST, JMS_PROP_LEVEL, JMS_PROP_LOGGER, JMS_PROP_MESSAGE,
JMS_PROP_MSG_TYPE, JMS_PROP_MSG_TYPE_VALUE, JMS_PROP_THREAD, JMS_PROP_TIME

Constructor Summary

JMSLog() You will need to call the configure() method if you use this constructor.

Method Summary

void configure(org.jdom.Element e) Configure this logger given the XML element.

org.jdom.Element getConfiguration(org.jdom.Element element) Get the current configuration of
this logger.

void log(SyslogMessage sm) Write a log message.

void shutdown() Prepare for shutdown.

Methods inherited from class com.protomatter.syslog.BasicLogger

configure, formatLogEntry, getName, getPolicy, getTextFormatter, mightLog,
resetDateFormat, setName, setPolicy, setTextFormatter, shouldLog

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 74 of 146

Component Name: LengthRolloverLog
Classification: Java Public Class
Definition: A logger that writes to a file, and will roll its log files after a certain number

of bytes have been written to them.
Uses/Interactions: Extends BasicLogger

Implements Syslogger (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Fields inherited from class com.protomatter.syslog.BasicLogger

formatter, policy

Constructor Summary

LengthRolloverLog() You will need to call the configure() method to configure this logger if you use this
constructor.

LengthRolloverLog(java.lang.String basename, java.lang.String extension, int roll,
boolean append, boolean autoFlush) Write log information to the given log, roll when specified.

Method Summary

void configure(org.jdom.Element e) Configure this logger given the XML element.

org.jdom.Element getConfiguration(org.jdom.Element element) Get the current configuration of
this logger.

void log(SyslogMessage message) Log an entry to the log.

void rollover() Roll the logs now.

void shutdown() Shutdown this logger.

Methods inherited from class com.protomatter.syslog.BasicLogger

configure, formatLogEntry, getName, getPolicy, getTextFormatter, mightLog,
resetDateFormat, setName, setPolicy, setTextFormatter, shouldLog

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 75 of 146

Component Name: MailLog
Classification: Java Public Class
Definition: A logger that sends email.
Uses/Interactions: Extends BasicLogger

Implements Syslogger (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Fields inherited from class com.protomatter.syslog.BasicLogger

formatter, policy

Constructor Summary

MailLog() You will need to call the configure() method if you use this constructor.

MailLog(java.lang.String workQueueName, java.lang.String smtpServer) Create a new
mail log that communicates with the given SMTP on port 25.

MailLog(java.lang.String workQueueName, java.lang.String smtpServer, int port)
Create a new mail log that communicates with the given SMTP on the given port.

Method Summary

void configure(org.jdom.Element e) Configure this logger given the XML element.

org.jdom.Element getConfiguration(org.jdom.Element element) Get the current configuration of
this logger.

SyslogMailSubjectFo
rmatter getSubjectFormatter() Get the message subject formatter.

java.lang.String getWorkQueue() Get the name of the work queue that this logger will actually do work
in.

void log(SyslogMessage message) Log a message.

void setSubjectFormatter(SyslogMailSubjectFormatter subjectFormat) Set the
message subject formatter.

void setWorkQueue(java.lang.String workQueue) Set the name of the work queue
that this logger will actually do work in.

void shutdown() Closes down the file and prepares for shutdown.

Methods inherited from class com.protomatter.syslog.BasicLogger

configure, formatLogEntry, getName, getPolicy, getTextFormatter, mightLog,

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 76 of 146

resetDateFormat, setName, setPolicy, setTextFormatter, shouldLog

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 77 of 146

Component Name: OpenFileLog
Classification: Java Public Class
Definition: A logger that opens the file for each log entry and closes it after it is done

writing.
Uses/Interactions: Extends BasicLogger

Implements Syslogger (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Fields inherited from class com.protomatter.syslog.BasicLogger

formatter, policy

Constructor Summary

OpenFileLog() You will need to call the configure() method if you use this constructor.

OpenFileLog(java.io.File f) Create an OpenFileLog attached to the given file.

Method Summary

void configure(org.jdom.Element e) Configure this logger given the XML element.

org.jdom.Element getConfiguration(org.jdom.Element element) Get the current configuration
of this logger.

java.io.File getFile() Get the file we're writing to.

void log(SyslogMessage message) Write a log message.

void setFile(java.io.File f) Set the file we're writing to.

void shutdown() Cleanup our file and prepare for shutdown.

Methods inherited from class com.protomatter.syslog.BasicLogger

configure, formatLogEntry, getName, getPolicy, getTextFormatter, mightLog,
resetDateFormat, setName, setPolicy, setTextFormatter, shouldLog

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 78 of 146

Component Name: PerClassPolicy
Classification: Java Public Class
Definition: A policy that can make decisions on a per-class basis.
Uses/Interactions:
Interfaces/Exports:
Inner Class Summary

class PerClassPolicy.PolicyGroup A policy within a policy -- this is exactly like the
SimpleLogPolicy except that it also checks to see if the class issuing the log message is in
some set.

Constructor Summary

PerClassPolicy() Default constructor.

Method Summary

void addPolicyGroup(PerClassPolicy.PolicyGroup group) Add a policy group to
our list.

void configure(org.jdom.Element e) Configure this policy given the XML element.

org.jdom.Element getConfiguration(org.jdom.Element element) Get this object's configuration
represented as an XML Element.

java.util.Iterator getPolicyGroups() Get the list of policy groups.

void removePolicyGroup(PerClassPolicy.PolicyGroup group) Remove a policy
group from our list.

boolean shouldLog(SyslogMessage message) Decide if the message should be logged.

Methods inherited from class com.protomatter.syslog.SimpleLogPolicy

addChannel, getChannels, getLogMask, inMask, removeAllChannels, removeChannel,
setChannels, setChannels, setLogMask, setLogMask

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 79 of 146

Component Name: PrintWriterLog
Classification: Java Public Class
Definition: An implementation of an object that will log things using the Syslog

facility.
Uses/Interactions: Extends BasicLogger

Implements Syslogger (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Fields inherited from class com.protomatter.syslog.BasicLogger

formatter, policy

Constructor Summary

PrintWriterLog() Construct a new PrintWriterLog -- you must call configure() after using this constructor.

PrintWriterLog(java.io.PrintWriter writer) Construct a new PrintWriterLog attached to the given
PrintWriter.

PrintWriterLog(java.lang.String streamName) Construct a new PrintWriterLog attached to the given
stream.

Method Summary

void configure(org.jdom.Element e) Configure this logger given the XML element.

org.jdom.Element getConfiguration(org.jdom.Element element) Get the current configuration of
this logger.

void log(SyslogMessage message) Write a log message.

void setWriter(java.io.PrintWriter writer) Set the writer that we're writing to.

void shutdown() Clean up and prepare for shutdown.

Methods inherited from class com.protomatter.syslog.BasicLogger

configure, formatLogEntry, getName, getPolicy, getTextFormatter, mightLog,
resetDateFormat, setName, setPolicy, setTextFormatter, shouldLog

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 80 of 146

Component Name: RemoteLog
Classification: Java Public Class
Definition: A logger that sends messages to remote receivers bound in JNDI. Objects

bound directly under the ‘com.protomatter.syslog.remote’ location in JNDI
will receive the log message if they implement the RemoteLogReceiver
interface.

Uses/Interactions: Extends BasicLogger
Implements Syslogger (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Fields inherited from class com.protomatter.syslog.BasicLogger

formatter, policy

Constructor Summary

RemoteLog() You will need to call the configure() method if you use this constructor.

Method Summary

void configure(org.jdom.Element e) Configure this logger given the XML element.

org.jdom.Element getConfiguration(org.jdom.Element element) Get the current configuration of
this logger.

void log(SyslogMessage sm) Log the given message to all bound listeners.

void shutdown() Prepare for shutdown.

Methods inherited from class com.protomatter.syslog.BasicLogger

configure, formatLogEntry, getName, getPolicy, getTextFormatter, mightLog,
resetDateFormat, setName, setPolicy, setTextFormatter, shouldLog

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 81 of 146

Component Name: RemoteLogReceiverImpl
Classification: Java Public Class
Definition: A simple implementation of the RemoteLogReceiver interface. The

SyslogServer class uses this object if it is listening to remote messages (not
messages from a JMS topic, though).

Uses/Interactions:
Interfaces/Exports:
Constructor Summary

RemoteLogReceiverImpl() Default constructor.

Method Summary

void log(java.lang.String ipAddress, java.lang.String loggerClass,
java.lang.String channel, java.lang.String message, java.lang.Object
detail, int level, java.lang.String threadName, long messageSendTime)
Remote log receiver callback.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 82 of 146

Component Name: SimpleLogPolicy
Classification: Java Public Class
Definition: The default LogPolicy that knows about log levels and channels.
Uses/Interactions:
Interfaces/Exports:
Constructor Summary

SimpleLogPolicy() All channels are listened to by default, and the default log mask is inherited from Syslog
itself.

Method Summary

void addChannel(java.lang.String channel) Add the given channel to the list of
channels we are listening to.

void configure(org.jdom.Element e) Configure this policy given the XML element.

java.util.Iterator getChannels() Get the list of channels this policy listens to.

org.jdom.Element getConfiguration(org.jdom.Element element) Get this object's configuration
represented as an XML Element.

int getLogMask() Get the mask for logging of messages.

protected boolean inMask(int level, int mask) Check if the given level is covered by the given mask.

void removeAllChannels() Remove all channels from the list of channels we are listening to.

void removeChannel(java.lang.String channel) Remove the given channel from the
list of channels we are listening to.

void setChannels(java.util.List channels) Set the list of channels to use.

void setChannels(java.util.Set channelSet) Set the list of channels to use.

void setLogMask(int mask) Set the mask for logging of messages.

void setLogMask(java.lang.String minLevel) Set the mask to at or above the level
specified.

boolean shouldLog(SyslogMessage message) Determine if a log message should be logged
given the information.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 83 of 146

Component Name: SimpleSyslogMailSubjectFormatter
Classification: Java Public Class
Definition: A simple mail subject formatter. This class is used by default by the

MailLog logger.
Uses/Interactions: Implements SyslogMailSubjectFormatter

Implements XMLConfigurable (indirect)
Interfaces/Exports:
Constructor Summary

SimpleSyslogMailSubjectFormatter() Default constructor.

Method Summary

void configure(org.jdom.Element e) Configure this text formatter given the XML element.

java.lang.String formatMessageSubject(SyslogMessage message) Format the given log entry.

org.jdom.Element getConfiguration(org.jdom.Element element) Get this object's configuration
represented as an XML Element.

protected
java.lang.String getHostname(java.net.InetAddress host)

boolean getShowChannel() Get whether we should show the channel name in the output.

boolean getShowHostName() Get whether we should show the host name in the output.

boolean getShowThreadName() Get whether we should show the thread name in the output.

protected
java.lang.String getStringForLevel(int level)

void setShowChannel(boolean showChannel) Set whether we should show the channel
name in the output.

void setShowHostName(boolean showHostName) Set whether we should show the host name
in the output.

void setShowThreadName(boolean showThreadName) Set whether we should show the
thread name in the output.

protected
java.lang.String

trimFromLastPeriod(java.lang.String s) Given something like "foo.bar.Baz" this
will return "Baz".

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 84 of 146

Component Name: SimpleSyslogTextFormatter
Classification: Java Public Class
Definition: A simple log entry formatter. This class is used by several of the included

Syslogger implementations to format their log entries.
Uses/Interactions: Implements SyslogTextFormatter

Implements XMLConfigurable (indirect)
Extended by HTMLSyslogTextFormatter
Extended by SyslogHTMLMailFormatter
Extended by WISyslogTextFormatter

Interfaces/Exports:
Constructor Summary

SimpleSyslogTextFormatter() Default constructor.

Method Summary

void configure(org.jdom.Element e) Configure this text formatter given the XML
element.

protected char[] formatDate(long theDate) Format the given date with the dateformat that's been
set.

void formatLogEntry(java.lang.StringBuffer b, SyslogMessage message)
Format the given log entry.

void formatMessageDetail(java.lang.StringBuffer b, SyslogMessage
message) Format the given log message's detail.

org.jdom.Element getConfiguration(org.jdom.Element element) Get this object's configuration
represented as an XML Element.

java.lang.String getDateFormat() Get the format for logging dates.

int getDateFormatCacheTime() Get the number of milliseconds a date format should
be cached.

java.util.TimeZone getDateFormatTimezone() Get the timezone of the date format.

protected
java.lang.String getHostname(java.net.InetAddress host)

java.lang.String getLogFooter() Get the log footer.

java.lang.String getLogHeader() Get the log header.

protected
java.lang.Object[]

getNextException(java.lang.Throwable t) Get the "next" exception in this
series.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 85 of 146

boolean getShowChannel() Get whether we should show the channel name in the output.

boolean getShowHostName() Get whether we should show the host name in the output.

boolean getShowThreadName() Get whether we should show the thread name in the output.

protected char[] getStringForLevel(int level)

void resetDateFormat() Reset the formatDate(...) method so that it's guaranteed to
not return a cached date string the next time it's called.

void setDateFormat(java.lang.String format) Set the format for logging dates.

void setDateFormatCacheTime(int cacheTime) Set the number of milliseconds a
date format should be cached.

void setDateFormatTimezone(java.util.TimeZone zone) Set the time zone of the
date format.

void setShowChannel(boolean showChannel) Set whether we should show the
channel name in the output.

void setShowHostName(boolean showHostName) Set whether we should show the
host name in the output.

void setShowThreadName(boolean showThreadName) Set whether we should show
the thread name in the output.

protected
java.lang.String trimFromLastPeriod(java.lang.String s)

protected void trimFromLastPeriod(java.lang.StringBuffer b, java.lang.String s,
int width) Given something like "foo.bar.Baz" this will return "Baz".

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 86 of 146

Component Name: Syslog
Classification: Java Public Class
Definition: This class implements a system-wide logging utility. It allows a program

to log messages and objects and different severity levels in a standardized
way.

Uses/Interactions:
Interfaces/Exports:
Field Summary

static java.lang.String ALL_CHANNEL The symbolic name for all channels.

static int currentLogMask The current system-wide log mask.

static int DEBUG A log generated during debugging of the software.

static java.lang.String DEFAULT_CHANNEL The name of the default log channel.

static int ERROR One of the software components caused an error or exception.

static int FATAL One of the software components is no longer functional.

static int INFO An informational message that might come in handy later.

static int INHERIT_MASK Loggers can inherit Syslog's log mask by setting their log mask
to this value.

static int WARNING A warning message that the system administrator might want to
know about.

Method Summary

static void addLogger(Syslogger log) Registers a new Syslogger object with Syslog.

static void addWork(java.lang.String queueName, java.lang.Runnable r) Add work to the
given background queue.

static int atOrAbove(int level)

static boolean canDebug() Determine if the current syslog mask would allow a message at the DEBUG level
to be logged.

static boolean canDebug(java.lang.Object logger) Deprecated.

static boolean canError() Determine if the current syslog mask would allow a message at the ERROR level
to be logged.

static boolean canError(java.lang.Object logger) Deprecated.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 87 of 146

static boolean canFatal() Determine if the current syslog mask would allow a message at the FATAL level
to be logged.

static boolean canFatal(java.lang.Object logger) Deprecated.

static boolean canInfo() Determine if the current syslog mask would allow a message at the INFO level to
be logged.

static boolean canInfo(java.lang.Object logger) Deprecated.

static boolean canLog(int level) Determine if the current default syslog mask would allow the given
level of message to be logged.

static boolean canLog(java.lang.Object logger, int level) Deprecated.

static boolean canWarning() Determine if the current syslog mask would allow a message at the WARNING
level to be logged.

static boolean canWarning(java.lang.Object logger) Deprecated.

static boolean configure(org.jdom.Element syslogConfig) Configure syslog from the given XML
document.

static boolean configure(java.io.File xmlFile) Configure syslog from the given XML file.

static void debug(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object message) Logs a debug message, which will be converted through
toString().

static void debug(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object message, java.lang.Object detail) Logs a debug message
with a detail object, both of which will be converted through toString().

static void debug(java.lang.Object logger, java.lang.Object message) Logs a debug
message, which will be converted through toString().

static void debug(java.lang.Object logger, java.lang.Object message,
java.lang.Object detail) Logs a debug message with a detail object, both of which will
be converted through toString().

static void debugToChannel(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object message) Logs a debug message to
the given channel.

static void debugToChannel(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object message, java.lang.Object
detail) Logs a debug message with a detail object to the given channel.

static void
debugToChannel(java.lang.Object logger, java.lang.Object channel,
java.lang.Object message) Logs a debug message to the given channel.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 88 of 146

java.lang.Object message) Logs a debug message to the given channel.

static void debugToChannel(java.lang.Object logger, java.lang.Object channel,
java.lang.Object message, java.lang.Object detail) Logs a debug message
with a detail object to the given channel.

static void error(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object message) Logs an error message, which will be converted through
toString().

static void error(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object message, java.lang.Object detail) Logs an error message
with a detail object, both of which will be converted through toString().

static void error(java.lang.Object logger, java.lang.Object message) Logs an error
message, which will be converted through toString().

static void error(java.lang.Object logger, java.lang.Object message,
java.lang.Object detail) Logs an error message with a detail object, both of which will
be converted through toString().

static void errorToChannel(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object message) Logs an error message to
the given channel.

static void errorToChannel(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object message, java.lang.Object
detail) Logs an error message with a detail object to the given channel.

static void errorToChannel(java.lang.Object logger, java.lang.Object channel,
java.lang.Object message) Logs an error message to the given channel.

static void errorToChannel(java.lang.Object logger, java.lang.Object channel,
java.lang.Object message, java.lang.Object detail) Logs an error message
with a detail object to the given channel.

static void fatal(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object message) Logs a fatal message, which will be converted through
toString().

static void fatal(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object message, java.lang.Object detail) Logs a fatal message with a
detail object, both of which will be converted through toString().

static void fatal(java.lang.Object logger, java.lang.Object message) Logs a fatal
message, which will be converted through toString().

static void fatal(java.lang.Object logger, java.lang.Object message,
java.lang.Object detail) Logs a fatal message with a detail object, both of which will be
converted through toString().

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 89 of 146

static void fatalToChannel(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object message) Logs a fatal message to
the given channel.

static void fatalToChannel(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object message, java.lang.Object
detail) Logs a fatal message with a detail object to the given channel.

static void fatalToChannel(java.lang.Object logger, java.lang.Object channel,
java.lang.Object message) Logs a fatal message to the given channel.

static void fatalToChannel(java.lang.Object logger, java.lang.Object channel,
java.lang.Object message, java.lang.Object detail) Logs a fatal message with a
detail object to the given channel.

static
org.jdom.Docume

nt
getConfiguration() Get an XML representation of the current configuration state of Syslog
including all loggers, etc.

static Syslog getInstance() Returns the global Syslog instance.

static
java.net.InetAd

dress
getLocalHostName() Get the local hostname.

static
Syslogger getLogger(java.lang.String name) Get a logger by name.

static
java.util.Itera

tor
getLoggers() Returns an Enumeration of all Syslogger objects registered with Syslog.

static int getLogMask() Get the default mask for logging of messages.

static
java.util.Map getWorkQueueMap() Get a map of the background work queues.

static void info(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object message) Logs an info message, which will be converted through
toString().

static void info(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object message, java.lang.Object detail) Logs an info message with
a detail object, both of which will be converted through toString().

static void info(java.lang.Object logger, java.lang.Object message) Logs an info
message, which will be converted through toString().

static void info(java.lang.Object logger, java.lang.Object message,
java.lang.Object detail) Logs an info message with a detail object, both of which will
be converted through toString().

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 90 of 146

static void infoToChannel(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object message) Logs an info message to
the given channel.

static void infoToChannel(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object message, java.lang.Object
detail) Logs an info message with a detail object to the given channel.

static void infoToChannel(java.lang.Object logger, java.lang.Object channel,
java.lang.Object message) Logs an info message to the given channel.

static void infoToChannel(java.lang.Object logger, java.lang.Object channel,
java.lang.Object message, java.lang.Object detail) Logs an info message with
a detail object to the given channel.

static void log(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object msg, java.lang.Object detail, int level) Log a message.

static void log(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object msg, java.lang.Object
detail, int level) Log a message.

static void log(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object msg, java.lang.Object
detail, int level, java.lang.Thread thread, java.lang.String
threadName, long messageSendTime) Log a message.

static void log(java.net.InetAddress host, java.lang.Object logger,
java.lang.Throwable e) Logs an exception for the given object.

static void log(java.net.InetAddress host, java.lang.Object logger,
java.lang.Throwable e, int level) Logs an exception for the given object at a given
level.

static void log(java.lang.Object logger, java.lang.Object msg, java.lang.Object
detail, int level) Log a message.

static void log(java.lang.Object logger, java.lang.Object channel,
java.lang.Object msg, java.lang.Object detail, int level) Log a message.

static void log(java.lang.Object logger, java.lang.Throwable e) Logs an exception for the
given object.

static void log(java.lang.Object logger, java.lang.Throwable e, int level) Logs an
exception for the given object at a given level.

static void main(java.lang.String[] args) Write an example XML configuration file to standard
out.

static boolean mightDebug(java.lang.Object logger) Determine if it's likely that someone will listen
to a debug message from the given logger.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 91 of 146

static boolean mightDebug(java.lang.Object logger, java.lang.Object channel) Determine if
it's likely that someone will listen to a debug message from the given logger on the given
channel(s).

static boolean mightError(java.lang.Object logger) Determine if it's likely that someone will listen
to an error message from the given logger.

static boolean mightError(java.lang.Object logger, java.lang.Object channel) Determine if
it's likely that someone will listen to an error message from the given logger on the given
channel(s).

static boolean mightFatal(java.lang.Object logger) Determine if it's likely that someone will listen
to a fatal message from the given logger.

static boolean mightFatal(java.lang.Object logger, java.lang.Object channel) Determine if
it's likely that someone will listen to a fatal message from the given logger on the given
channel(s).

static boolean mightInfo(java.lang.Object logger) Determine if it's likely that someone will listen to
an info message from the given logger.

static boolean mightInfo(java.lang.Object logger, java.lang.Object channel) Determine if
it's likely that someone will listen to an info message from the given logger on the given
channel(s).

static boolean mightLog(java.lang.Object logger, int level) Determine if it's likely that
someone will listen to a message from the given logger at the given level.

static boolean mightLog(java.lang.Object logger, int level, java.lang.Object channel)
Determine if it's likely that someone will listen to a message from the given logger at the given
level on the given channel(s).

static boolean mightWarning(java.lang.Object logger) Determine if it's likely that someone will
listen to a warning message from the given logger.

static boolean mightWarning(java.lang.Object logger, java.lang.Object channel)
Determine if it's likely that someone will listen to a warning message from the given logger on
the given channel(s).

static void removeAllLoggers() Deregisters all Syslogger objects.

static boolean removeLogger(Syslogger log) Deregisters a Syslogger object from Syslog.

static void setLocalHostName() Set the local hostname automatically.

static void setLocalHostName(java.net.InetAddress host) Set the local hostname.

static void setLogMask(int mask) Set the default mask for logging of messages.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 92 of 146

static void setLogMask(java.lang.String minLevel) Set the mask to at or above the level
specified.

static void shutdown() Remove all the loggers and shut them down.

static void warning(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object message) Logs a warning message, which will be converted through
toString().

static void warning(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object message, java.lang.Object detail) Logs a warning message
with a detail object, both of which will be converted through toString().

static void warning(java.lang.Object logger, java.lang.Object message) Logs a warning
message, which will be converted through toString().

static void warning(java.lang.Object logger, java.lang.Object message,
java.lang.Object detail) Logs a warning message with a detail object, both of which
will be converted through toString().

static void warningToChannel(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object message) Logs a warning message
to the given channel.

static void warningToChannel(java.net.InetAddress host, java.lang.Object logger,
java.lang.Object channel, java.lang.Object message, java.lang.Object
detail) Logs a warning message with a detail object to the given channel.

static void warningToChannel(java.lang.Object logger, java.lang.Object channel,
java.lang.Object message) Logs a warning message to the given channel.

static void warningToChannel(java.lang.Object logger, java.lang.Object channel,
java.lang.Object message, java.lang.Object detail) Logs a warning message
with a detail object to the given channel.

static void writeConfiguration(java.io.OutputStream out) Get an XML representation of the
current configuration state of Syslog including all loggers, etc and write it to the given output
stream.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 93 of 146

Component Name: SyslogHTMLMailFormatter
Classification: Java Public Class
Definition: A simple HTML log entry formatter for email.
Uses/Interactions: Extends SimpleSyslogTextFormatter

Implements SyslogTextFormatter (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Constructor Summary

SyslogHTMLMailFormatter() Default constructor.

Method Summary

java.lang.String formatLogEntry(SyslogMessage message) Format the given log entry.

protected char[] getStringForLevel(int level)

Methods inherited from class com.protomatter.syslog.SimpleSyslogTextFormatter

configure, formatDate, formatLogEntry, formatMessageDetail, getConfiguration,
getDateFormat, getDateFormatCacheTime, getDateFormatTimezone, getHostname,
getLogFooter, getLogHeader, getNextException, getShowChannel, getShowHostName,
getShowThreadName, resetDateFormat, setDateFormat, setDateFormatCacheTime,
setDateFormatTimezone, setShowChannel, setShowHostName, setShowThreadName,
trimFromLastPeriod, trimFromLastPeriod

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 94 of 146

Component Name: SyslogMessage
Classification: Java Public Class
Definition: A utility class representing all the information needed to make a syslog

call.
Uses/Interactions:
Interfaces/Exports:
Field Summary

java.lang.String channel The channel the message is for.

java.lang.Object detail The detailed message.

java.net.InetAddress host The address of the host making the call.

int level The log level.

java.lang.Object logger The object making the syslog call.

java.lang.String loggerClassname The classname of the logger.

java.lang.Object msg The message.

java.lang.Thread thread The thread that made the log request.

java.lang.String threadName The output of toString() on the thread that made the log request.

long time The time the call was made.

Constructor Summary

SyslogMessage() Default constructor.

SyslogMessage(java.net.InetAddress host, long time, java.lang.String channel,
java.lang.Object logger, java.lang.String loggerClassname, java.lang.Object msg,
java.lang.Object detail, int level, java.lang.Thread thread, java.lang.String
threadName) A utility constructor.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 95 of 146

Component Name: SyslogServer
Classification: Java Public Class
Definition: A standalone log processing server that either reads messages from a JMS

topic, or through RMI.
Uses/Interactions:
Interfaces/Exports:
Method Summary

static void main(java.lang.String[] args) Start the syslog log server.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 96 of 146

Component Name: SyslogT3Startup
Classification: Java Public Class
Definition: Configure syslog to start when WebLogic does.
Uses/Interactions:
Interfaces/Exports:
Constructor Summary
SyslogT3Startup() Default constructor -- called by WebLogic.
Method Summary
void setServices(weblogic.common.T3ServicesDef services) Part of the

weblogic.common.T3StartupDef interface.
java.lang.String shutdown(java.lang.String name, java.util.Hashtable ht) Shutdown

Syslog services.
java.lang.String startup(java.lang.String name, java.util.Hashtable ht) Start Syslog

services.
boolean startup(weblogic.common.T3ServicesDef services) A shortcut to starting

syslog services.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,

wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 97 of 146

Component Name: SyslogWriter
Classification: Java Public Class
Definition: A writer that is attached to Syslog. When data is flushed, any information

built up is sent off to Syslog.
Uses/Interactions:
Interfaces/Exports:
Fields inherited from class java.io.Writer

lock

Constructor Summary

SyslogWriter(java.lang.Object logger, int level) Create a new SyslogWriter.

SyslogWriter(java.lang.Object logger, java.lang.Object channel, int level) Create a
new SyslogWriter.

Method Summary

void close() Close the writer.

void flush() Flush unwritten data to Syslog.

void write(char[] buf, int offset, int length) Write the given data to the writer.

Methods inherited from class java.io.Writer

write, write, write, write

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 98 of 146

Component Name: TimeRolloverLog
Classification: Java Public Class
Definition: An implementation of an object that will log things using the Syslog

facility, and roll its log files after a certain amount of time has passed.
Uses/Interactions: Extends BasicLogger

Implements Syslogger (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Field Summary
static int ROLL_DAILY Roll logs at midnight.
static int ROLL_HOURLY Roll logs on the hour.
static int ROLL_MINUTELY Roll logs on the minute.
static int ROLL_MONTHLY Roll logs at midnight at the end of the month.
Fields inherited from class com.protomatter.syslog.BasicLogger
formatter, policy
Constructor Summary
TimeRolloverLog() You must call the configure() method to configure this logger if you

use this constructor.

TimeRolloverLog(java.lang.String basename, int roll, java.lang.String
extension) Write log information to the given log, roll when
specified.

TimeRolloverLog(java.lang.String basename, java.lang.String extension,
int roll, java.lang.String nameformat, boolean append,
boolean autoFlush) Write log information to the given log, roll
when specified.

Method Summary
void configure(org.jdom.Element e) Configure this logger given the XML

element.
boolean getAppend() Determine if we will append to files that already exist.
boolean getAutoFlush() Determine if we will automatically flush the writer.
java.lang.String getBaseFilename() Get the base name for the log file.
org.jdom.Element getConfiguration(org.jdom.Element element) Get the current

configuration of this logger.
java.lang.String getFileExtension() Get the file extension to use.
java.lang.String getNameFormat() Get the dateformat part of the name.
java.util.Date getNextRolloverTime() Calculate the next date to rollover the logs

based on how often we should roll.
int getRollType() Get the roll type.
void log(SyslogMessage message) Log an entry to the log.
void setAutoFlush(boolean flush) Should we will automatically flush the

writer?
void setNameFormat(java.lang.String fmt) Set the dateformat part of

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 99 of 146

the name.
void shutdown() Cleanup and prepare for shutdown.
Methods inherited from class com.protomatter.syslog.BasicLogger
configure, formatLogEntry, getName, getPolicy, getTextFormatter,

mightLog, resetDateFormat, setName, setPolicy,
setTextFormatter, shouldLog

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 100 of 146

Component Name: WISyslogTextFormatter
Classification: Java Public Class
Definition: A log formatter that mimics the log output from WebLogic.
Uses/Interactions: Extends SimpleSyslogTextFormatter

Implements SyslogTextFormatter (indirect)
Implements XMLConfigurable (indirect)

Interfaces/Exports:
Constructor Summary

WlSyslogTextFormatter()

Method Summary

java.lang.String formatLogEntry(SyslogMessage message)

protected char[] getStringForLevel(int level)

Methods inherited from class com.protomatter.syslog.SimpleSyslogTextFormatter

configure, formatDate, formatLogEntry, formatMessageDetail, getConfiguration,
getDateFormat, getDateFormatCacheTime, getDateFormatTimezone, getHostname,
getLogFooter, getLogHeader, getNextException, getShowChannel, getShowHostName,
getShowThreadName, resetDateFormat, setDateFormat, setDateFormatCacheTime,
setDateFormatTimezone, setShowChannel, setShowHostName, setShowThreadName,
trimFromLastPeriod, trimFromLastPeriod

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 101 of 146

3.4.6 Class Diagrams
3.4.6.1 Logger Classes

DatabaseLog

numRetries : int = 3
CHANNEL_NAME_LENGTH : int = 128
HOSTNAME_LENGTH : int = 32
LOGGER_NAME_LENGTH : int = 64
MESSAGE_LENGTH : int = 255
THREAD_NAME_LENGTH : int = 255

DatabaseLog()
shutdown()
setDriver()
setTablePrefix()
setURL()
setNumRetries()
setProperties()
getDriver()
getTablePrefix()
getURL()
getNumRetries()
getProperties()
initDatabase()
ensureChannelExists()
log()
log()
getHostname()
truncate()
...

(from syslog)

FileLog

append : boolean = true
autoFlush : boolean = false

FileLog()
FileLog()
FileLog()
setFile()
getFile()
setAppend()
getAppend()
setAutoFlush()
getAutoFlush()
log()
cleanup()
shutdown()
...

(from syslog)

JMSLog

persistent : boolean = false
priority : int = 5
ttl : int = 30 * 60 * 1000
running : boolean = false

JMSLog()
log()
shutdown()
configure()
getConfiguration()

(from syslog)

LengthRolloverLog

rolllength : int = 1048576
written : int
append : boolean = true
autoFlush : boolean = false

LengthRolloverLog()
LengthRolloverLog()
rollover()
log()
shutdown()
...

(from syslog)

MailLog

port : int = 25
html : boolean = false

MailLog()
MailLog()
MailLog()
setWorkQueue()
getWorkQueue()
setSubjectFormatter()
getSubjectFormatter()
log()
sendMail()
shutdown()
configure()
getConfiguration()
assembleAddressList()

(from syslog)

OpenFileLog

fileChanged : boolean = true

OpenFileLog()
OpenFileLog()
setFile()
getFile()
log()
cleanup()
shutdown()
configure()
getConfiguration()

(from syslog)

PrintWriterLog

writerChanged : boolean = true
canDumpConfig : boolean = false

PrintWriterLog()
PrintWriterLog()
PrintWriterLog()
setWriter()
log()
cleanup()
shutdown()
configure()
getConfiguration()

(from syslog)

RemoteLog

RemoteLog()
getSubContext()
log()
shutdown()
configure()
getConfiguration()

(from syslog)

TimeRolloverLog

ROLL_MINUTELY : int = 0
ROLL_HOURLY : int = 1
ROLL_DAILY : int = 2
ROLL_MONTHLY : int = 3
nextRolloverTime : long
rolltype : int
append : boolean = true
autoFlush : boolean = false

getRollType()
getBaseFilename()
getFileExtension()
getAppend()
getAutoFlush()
setAutoFlush()
TimeRolloverLog()
TimeRolloverLog()
TimeRolloverLog()
rollover()
rollover()
setNameFormat()
getNameFormat()
log()
getNextRolloverTime()
shutdown()
configure()
getConfiguration()

(from syslog)

Syslogger

log()
setName()
getName()
shutdown()
mightLog()
setPolicy()
getPolicy()

setTextFormatter()
getTextFormatter()

(from syslog)

BasicLogger

BasicLogger()
setPolicy()
getPolicy()
mightLog()
setTextFormatter()
getTextFormatter()
shouldLog()
formatLogEntry()
resetDateFormat()
setName()
getName()
configure()
privateConfigure()
configure()
getConfiguration()

(from syslog)

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 102 of 146

3.4.6.2 Formatter Classes

HTMLSyslogTextFormatter

DEBUG[] : char = "DEBUG".toCharArray()
INFO[] : char = "INFO".toCharArray()
WARNING[] : char = "WARNING".toCharArray()
ERROR[] : char = "ERROR".toCharArray()
FATAL[] : char = "FATAL".toCharArray()
UNKNOWN_LEVEL[] : char = "UNKNOWN".toCharArray()

HTMLSyslogTextFormatter()
setStyleSheet()
getStyleSheet()
getStringForLevel()
formatLogEntry()
getLogHeader()
getLogFooter()
configure()
getConfiguration()

(from syslog)

SimpleSyslogMailSubjectFormatter

showChannel : boolean = false
showThreadName : boolean = false
showHostName : boolean = false

SimpleSyslogMailSubjectFormatter()
formatMessageSubject()
getStringForLevel()
getHostname()
setShowHostName()
getShowHostName()
setShowThreadName()
getShowThreadName()
setShowChannel()
getShowChannel()
trimFromLastPeriod()
configure()
getConfiguration()

(from syslog)

SimpleSyslogTextFormatter

cr[] : char = System.getProperty("line.separator").toCharArray()
rb[] : char = " [".toCharArray()
lb[] : char = "] ".toCharArray()
rb_ns : char = '['
sp[] : char = " ".toCharArray()
sp_1 : char = ' '
DEBUG[] : char = "DBUG".toCharArray()
INFO[] : char = "INFO".toCharArray()
WARNING[] : char = "WARN".toCharArray()
ERROR[] : char = "EROR".toCharArray()
FATAL[] : char = "FTAL".toCharArray()
UNKNOWN_LEVEL[] : char = "????".toCharArray()
CH_ALL_CHANNEL[] : char = "[ALL_CHANNEL] ".toCharArray()
CH_DEF_CHANNEL[] : char = "[DEFAULT_CHANNEL] ".toCharArray()
lastDate : long = - 1
lastDateString[] : char = null
dateFormatCacheTime : int = 1000
showChannel : boolean = false
showThreadName : boolean = false
showHostName : boolean = false

SimpleSyslogTextFormatter()
formatLogEntry()
formatMessageDetail()
getNextException()
getStringForLevel()
getHostname()
setDateFormat()
getDateFormat()
setShowHostName()
getShowHostName()
setShowThreadName()
getShowThreadName()
setShowChannel()
getShowChannel()
setDateFormatCacheTime()
getDateFormatCacheTime()
setDateFormatTimezone()
getDateFormatTimezone()
formatDate()
trimFromLastPeriod()
trimFromLastPeriod()
resetDateFormat()
getLogHeader()
getLogFooter()
configure()
getConfiguration()

(from syslog)

SyslogMailSubjectFormatter

formatMessageSubject()

(from syslog)

SyslogHTMLMailFormatter

DEBUG[] : char = "DEBUG".toCharArray()
INFO[] : char = "INFO".toCharArray()
WARNING[] : char = "WARNING".toCharArray()
ERROR[] : char = "ERROR".toCharArray()
FATAL[] : char = "FATAL".toCharArray()
UNKNOWN_LEVEL[] : char = "????".toCharArray()

SyslogHTMLMailFormatter()
formatLogEntry()
getStringForLevel()

(from syslog)

SyslogTextFormatter

formatLogEntry()
formatMessageDetail()

getLogHeader()
getLogFooter()

resetDateFormat()

(from syslog)

WlSyslogTextFormatter

cr[] : char = System.getProperty("line.separator").toCharArray()
rt : char = '>'
lf[] : char = " <".toCharArray()
lab : char = '<'
DEBUG[] : char = "D".toCharArray()
INFO[] : char = "I".toCharArray()
WARNING[] : char = "W".toCharArray()
ERROR[] : char = "E".toCharArray()
FATAL[] : char = "F".toCharArray()
UNKNOWN_LEVEL[] : char = "?".toCharArray()

WlSyslogTextFormatter()
formatLogEntry()
getStringForLevel()

(from syslog)

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 103 of 146

3.4.6.3 Policy Classes

LogPolicy

shouldLog()

(from syslog)

PerClassPolicy

PerClassPolicy()
shouldLog()
getPolicyGroups()
addPolicyGroup()
removePolicyGroup()
configure()
getConfiguration()

(from syslog)

SimpleLogPolicy

logMask : int = Syslog.INHERIT_MASK
allChannels : boolean = false
initialized : boolean = false

SimpleLogPolicy()
setChannels()
setChannels()
addChannel()
removeChannel()
removeAllChannels()
getChannels()
shouldLog()
inMask()
setLogMask()
setLogMask()
getLogMask()
configure()
getConfiguration()
getLogMaskAsString()

(from syslog)

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 104 of 146

3.4.7 Interaction Diagrams
This sequence diagram illustrates the main object interactions involved in a basic log() call from
client code. Most other calls such as debug(), info(), warning() error(), fatal, and xxxToChannel()
basically serve as utility wrappers for the basic log() call. Understanding any one of the wrapper
calls, and the flow through to the formatting and logging, should serve as solid basis for all other
logging-type calls in this package.

 : ClientCode : Sy slog : Sy slogMessage : BasicLogger

log(InetAddress, Object, Object, Object, int)

getSyslogChannel()

log(InetAddress, Object, Object, Object, Object, int, Thread, String, long)

SyslogMessage(InetAddress, long, String, Object, String, Object, Object, int, Thread, String)

log(Sy slogMessage)

1. One of a number of
conv enience methods f or
logging can be called by the
client applicaiton.

2. Each of the conv enience
logging methods f ill in the
assumed parameters and call
the main log method of
Syslog.

3. Sy slog makes a call back
to the client code to
determine which channel to
use.

4. Sy slog then creates a
logging message and sends it to
the appropriate logger
implementation where the actual
logging of the message is
handled.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 105 of 146

3.4.8 References
• Protomatter web-site JavaDoc on Protomatter API

http://protomatter.sourceforge.net/latest/javadoc/com/protomatter/syslog/package-
summary.html

• Syslog white paper
http://protomatter.sourceforge.net/latest/javadoc/com/protomatter/syslog/syslog-
whitepaper.html

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 106 of 146

3.5 Persistence

3.5.1 Introduction
The Java persistence framework provides services that interact with application databases to
create, retrieve, update, and delete business objects. The framework will also provide support for
ad-hoc database interaction (interacting with databases outside of the business object
framework).

The ITA persistence feature set is implemented as an SFA-customized version of the Accenture
ReTA (Reusable eCommerce Technical Architecture) persistence framework. The ReTA code
base has been significantly modified to meet SFA application development requirements, and to
work optimally in the SFA technical environment. The basis for this framework is the ReTA
code, however, the ITA Persistence feature is now the standard. Specifically, the framework has
been modified to:

• Support applications running on the IBM WebSphere Application Server

• Implement IBM WAS best practices for database access

• Implement IBM WAS best practices for object management

• Integrate the ITA Exception Handling framework

• Integrate the ITA Logging framework

• Support ad-hoc database interaction

3.5.2 System Overview
The persistence framework provides a transparent and flexible mapping of the business objects to
relational database tables. It is transparent in that once the business objects and their mappings
are defined, application developers do not need to have any knowledge of the underlying
relational database tables. It is flexible in that if the underlying relational database model
changes, the business object model does not have to change with it – a change in the mapping
layer is all that should be required. The framework is made up of several components working
together:

• Domain Component

• Unit of Work Component

• Persistable Object Manager Component

• Result Set Component

• Business Mapper Component

• Business Object Component

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 107 of 146

A diagram of the components working together (retrieving a Customer Object from the database)
is presented below.

Runtime Environment

4.

 3.

Persistence Framework

Domain

Persistent
Object

Manager

Mapper

Unit of Work

Result Set

Customer
Object

JDBC
Connection

JDBC
Recordset 1.

Database

Table
Customer

2.

Large
Grained
Business
Component 5.

Figure 7: Using the ITA Persistence framework

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 108 of 146

Explanation of Steps

1. Create Mapper and Business Object, populate values to update
2. Create Domain with connection information
3. Create Persistable Object Manager passing the domain
4. Request object from the POM passing the Mapper information
5. POM executes the query, maps the data to the object, closes the unit of work, and returns the

object

3.5.3 Design Considerations
3.5.3.1 Assumptions and Dependencies

It is assumed that this framework will function in a J2EE application server environment. As the
current production server for SFA is IBM WebSphere 3.5, the framework will be compiled using
its required JDK version 1.2.2. It should also work with the current JavaServer Pages (1.1), Java
Servlet (2.2), Java Messaging Service (1.0.1), and Java Database Connectivity (2.0) specifications
for this server.

3.5.3.2 Goals and Guidelines

The goal of this development was to provide a simple yet robust persistence framework that
could easily be utilized by any SFA development team building applications in Java, or more
specifically on the WebSphere Application Server. It should be noted however, that while the
design of the persistence framework does incorporate the best practices as recommended in
WebSphere documentation, there is nothing in this package that ties it to WebSphere. An
important part of any project, database access is one of the most time-consuming coding tasks
and one of the most resource intensive components of a deployed application. Correct database
access coding is critical to the performance and maintainability of an application. However,
without a framework in place, each developer on a project will code database access as he or she
sees fit (and best knows how), often leading to a haphazard implementation and duplication of
effort. As such, object persistence and database access should be addressed with care and
forethought.

3.5.3.3 Development Methods

This framework was developed using general object-oriented software development techniques
as are specified in any standard text on the Java programming language. As the framework itself
is fairly straightforward in its class and relationship patterns it employs, no object oriented
modeling tool or methodology was specifically used in its design. However, the resulting source
code has been documented with standard class diagrams and sequence diagrams in order to
illustrate its structure more readily. These diagrams should be of great help to programmers
unfamiliar with this framework.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 109 of 146

3.5.4 System Architecture
3.5.4.1 Overview

The Persistence Framework provides the following services:

• Database Connection: the database connection is uncoupled from the application, and
optimal connection techniques (such as database pooling) are used to minimize server
resources.

• Database Mapping: the business objects are mapped to database table(s) for data
transparency and flexibility in application development

• Object Query: the queries on objects are triggered from business object events
• Record Locking: optimistic locking of retrieved data is implemented, in order to preserve

integrity of data

3.5.4.2 Subsystem Architecture: Domain

The Domain is an object store that holds a database URL, a username, and a password. It
represents the domain that the data resides in for the application. Storing database connection
information in this manner supports ease of application configuration updates.

3.5.4.3 Subsystem Architecture: Unit of Work

The UnitOfWork models a persistence unit of work. A UnitOfWork has a Connection that
represents the actual physical connection to the database. It allows a series of related actions to be
logically grouped together that can be either committed or rolled back against a database
connection. A UnitOfWork is also responsible for managing object identity conflicts and caching
of business objects, if it is supported by the Persistable objects.

3.5.4.4 Subsystem Architecture: Persistable Object Manager

The Persistable Object Manager is used to create, read, update, and delete information from the
data store. It holds (or creates and holds) a single Unit of Work that can be used throughout a
Business Component method that accesses the data store.

Methods from the BusinessComponent class and the Business class that called methods within
this class should create a single PersistableObjectManager object and directly call the methods
here for persistent data access and storage. The PersistableObjectManager class also acts as a
wrapper for the data access layer, such as JDBC.

3.5.4.5 Subsystem Architecture: Result Set

The Result Set is a wrapper around the JDBC ResultSet to provide transparent access to data
stored in the result set. It allows the architecture to access the result set in an object-oriented
manner. For example, sending next() to the result set will return the next business object instance

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 110 of 146

in the result set. Executing database operations such as select and detect on the Extent will return
a Result Set of business object instances retrieved from the data store.

3.5.4.6 Subsystem Architecture: Business Mapper

The Business Mapper needs to provide the Business Object – specific mapping information to the
rest of the framework. The ISFAPersistableMapper interface defines what methods will be
required for a functional persistable business object mapper to implement. Implementing the
interface for a particular business object will lead to a Mapper class, where all database specific
code (select, insert, update, delete statements, etc.) will be contained. The framework then uses
this code to map the business object to the database.

3.5.4.7 Subsystem Architecture: Business Object

The Business Object is a basic data structure with very little code overhead other than private
data members and public set() and get() methods to access them. In this way the data that is
retrieved from the database is completely decoupled from its Java representation. As a result
once data is retrieved it can be manipulated with very little overhead (i.e. database access or
connections) until it needs to be persisted back to the data store.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 111 of 146

3.5.5 Detailed System Design
3.5.5.1 Component Definitions

ISFAPersistableMapper Interface

Interface Name: ISFAPersistableMapper
Component: Persistence
Description: The ISFAPersistableMapper interface defines what methods are required for a

functional persistable business object mapper.
Package: gov.ed.sfa.ita.persistence
Superclass: none

Attribute Type Description

Private:
none
Protected:
none
Public:
none

Con/Destructor Arguments

(Type, Name)
Description

none

Method Arguments

(Type, Name)

Valid Responses
(Return Type,
Exceptions
Thrown)

Description

Private:
none
Protected:
none
Public:
getDeleteQuery none java.lang.String This returns a DELETE query

statement for the business object.
getInsertQuery none java.lang.String This returns an INSERT query

statement for the business object.
getKeySelectQuery none java.lang.String This returns a SELECT query

statement for the business object
based on the key field.

getSelectQuery java.lang.String
selectCondition

java.lang.String This returns a SELECT query
statement for the business object.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 112 of 146

Method Arguments
(Type, Name)

Valid Responses
(Return Type,
Exceptions
Thrown)

Description

getUpdateQuery none java.lang.String This returns a UPDATE query
statement for the business object.

newFrom gov.ed.sfa.ita.SFAResultSet
sourceValues

java.lang.Object This populates mapped
attributes with the values from
the result set.

populateAttributeValues java.lang.Object
businessObject

void This method will populate all of
the necessary attribute values
from the business object in order
to do an update or insert.

populateKeyAttributeValues java.lang.Object
businessObject

void This method will populate all of
the necessary attribute values
from the business object in order
to do a keyed select or delete.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 113 of 146

SFAPersistableObjectManager Class

Class Name: SFAPersistableObjectManagerClass
Component: Persistence
Description: The SFAPersistableObjectManager Class is used to create, read, update, and delete

information from the data store. It creates (if necessary) and holds a single
UnitOfWork that can be used throughout a Business Component method that
accesses the data store.

Package: gov.ed.sfa.ita.persistence
Superclass:

Attribute Type Description

Private:
transaction SFAUnitOfWork Used to hold a reference to the UnitOfWork.
databaseType int Used to track the current database type.
Protected:
none
Public:
none

Con/Destructor Arguments

(Type, Name)
Description

SFAPersistableObjectManage
r

SFADomain domain This constructor takes a Domain and instantiates a
UnitOfWork based on it.

SFAPersistableObjectManage
r

SFAUnitOfWork uow This constructor uses the UnitOfWork given to it
for its transactions.

Method Arguments

(Type, Name)

Valid Responses
(Return Type,
Exceptions Thrown)

Description

Private:
none
Protected:
none
Public:
abortTransaction none void Rolls back the current

transaction.
addObject java.lang.String insertString,

java.util.Vector insertParams
void Adds an object to the

object store.
commitTransaction none void Commits the current

transaction.
endTransaction none void Ends the current

transaction

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 114 of 146

Method Arguments
(Type, Name)

Valid Responses
(Return Type,
Exceptions Thrown)

Description

getJDBCConnection none java.sql.Connection Returns a handle to the
JDBC Connection object
that the POM is using.

getNextSequenceValue java.lang.String sequenceName java.lang.Integer Gets an Integer value for
the next sequence key
value.

getObject ISFAPersistableMapper
persistMapper,
java.lang.String.selectCondition,
java.util.Vector
retrieveParameters

java.lang.Object Selects and returns the
first object from the object
store that meets the
criteria supplied.

getObjects ISFAPersistableMapper
persistMapper,
java.lang.String.selectCondition,
java.util.Vector
retrieveParameters

java.util.Vector Retrieves a vector of
objects from the object
store matching the
selectCondition.

getObjectsAsHashtable ISFAPersistableMapper
persistMapper,
java.lang.String.selectCondition,
java.util.Vector
retrieveParameters

java.util.Hashtable Retrieves a hashtable of
objects from the object
store matching the
selectCondition.

removeObject java.lang.String removeString,
java.util.Vector
removeParameters

void Removes an object from
the object store that meets
the criteria supplied.

removeObjects java.lang.String removeString,
java.util.Vector
removeParameters

void Removes the objects from
the object store that meet
the criteria supplied.

setDatabaseType int type void Sets the internal flag
indicating the database
type.

updateObject java.lang.String updateCriteria,
java.util.Vector
updateParameters

void Updates an object in the
object store that meets the
criteria supplied.

updateObjects java.lang.String updateCriteria,
java.util.Vector
updateParameters

void Updates objects in the
object store that meet the
criteria supplied.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 115 of 146

SFAUnitOfWork Class

Class Name: SFAUnitOfWork
Component: Persistence
Description: The SFAUnitOfWork class models a persistence unit of work. It has a Connection

that represents the actual physical connection to the database. It allows a series of
related actions to be logically grouped together that can be either committed or rolled
back against a database.

Package: gov.ed.sfa.ita.persistence
Superclass: none

Attribute Type Description

Private:
connection java.sql.Connection Holds the connection to the database.
Protected:
none
Public:
none

Con/Destructor Arguments

(Type, Name)
Description

SFAUnitOfWork none Default constructor.
SFAUnitOfWork java.lang.String url,

java.util.Properties dbInfo
Constructor with information on how to connect to
the underlying database.

Method Arguments

(Type, Name)

Valid Responses
(Return Type,
Exceptions
Thrown)

Description

Private:
none
Protected:
none
Public:
abort none void Rolls back all modifications

made to the object store since
the last commit, rollback, or
checkpoint.

checkpoint none void Commits all modifications
made to the object store since
the last commit, rollback, or
checkpoint, and sets a
checkpoint for rollbacks.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 116 of 146

Method Arguments
(Type, Name)

Valid Responses
(Return Type,
Exceptions
Thrown)

Description

commit none void Commits all modifications
made to the object store since
the last commit, rollback or
checkpoint.

end none void Ends the unit of work and
drops the connection to the
object store domain (but not
physically to the DBMS).

executeQuery java.lang.String query SFAResultSet Takes the SQL query and
executes it against the data
store, returning an
SFAResultSet.

executeUpdate java.lang.String query int Executes a simple SQL update
that returns a count of the
number of rows updated.

getConnection none java.sql.Connection Returns a Connection to the
current data store.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 117 of 146

SFAResultSet

Class Name: SFAResultSet
Component: Persistence
Description: The SFAResultSet class is a wrapper around the JDBC ResultSet to provide

transparent access to data stored in the result set. It allows the architecture to access
the result set in an object-oriented manner.

Package: gov.ed.sfa.ita.persistence
Superclass: none

Attribute Type Description

Private:
recordSet java.sql.ResultSet Holds the underlying result set.
Protected:
none
Public:
none

Con/Destructor Arguments

(Type, Name)
Description

SFAResultSet java.sql.ResultSet aRecordSet Creates an SFAResultSet based on the JDBC
ResultSet passed to it.

Method Arguments

(Type, Name)

Valid Responses
(Return Type,
Exceptions
Thrown)

Description

Private:
none
Protected:
none
Public:
close none void Closes the result set.
getBoolean java.lang.String columnName boolean Returns the boolean value for

the given column.
getDate java.lang.String columnName java.lang.Date Returns the date value for the

given column.
getFloat java.lang.String columnName float Returns the float value for the

given column.
getInt java.lang.String columnName int Returns the int value for the

given column.
getLong java.lang.String columnName long Returns the long value for the

given column.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 118 of 146

Method Arguments
(Type, Name)

Valid Responses
(Return Type,
Exceptions
Thrown)

Description

getObject java.lang.String columnName java.lang.Object Returns the Object for the given
column.

getString java.lang.String columnName java.lang.String Returns the string value for the
given column.

next none boolean Moves to the next object in the
SFAResultSet.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 119 of 146

SFADomain Class

Class Name: SFADomain
Component: Persistence
Description: The SFADomain class is a very simple class that is used by other classes. The

Domain class acts as a holder for the connection string information, user name,
password, and data source name. The SFADomain class contains no application
logic.

Package: gov.ed.sfa.ita.persistence
Superclass: none

Attribute Type Description

Private:
properties java.util.Properties Used to hold the user name and password.
connectionString String Used to hold the connection information.
USER String A constant string to act as the key for the user

name in the properties object.
PASSWORD String A constant string to act as the key for the password

in the properties object.
Protected:
none
Public:
none

Con/Destructor Arguments

(Type, Name)
Description

SFADomain Default constructor.
SFADomain java.util.Properties dbProperties Constructor that takes a database properties object.
SFADomain java.lang.String url Constructor that takes a connection string.
SFADomain java.lang.String connectionString,

java.lang.String user,
java.lang.String password

Constructor that takes a connection string, user
name, and password.

Method Arguments

(Type, Name)

Valid Responses
(Return Type,
Exceptions
Thrown)

Description

Private:
none
Protected:
none
Public:

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 120 of 146

Method Arguments
(Type, Name)

Valid Responses
(Return Type,
Exceptions
Thrown)

Description

getConnectionString none java.lang.String Returns the connection string for
the object.

getProperties none java.util.Properties Returns the properties for the
object.

setConnectionString java.lang.String url void Sets the connection string.
setPassword java.lang.String password void Sets the password.
setProperties java.util.Properties

dbProperties
void Sets the properties.

setUser java.lang.String user void Sets the user id.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 121 of 146

SFAParser Class

Class Name: SFAParser
Component: Persistence
Description: The SFAParser class converts parameterized strings into formatted SQL statements.

This is done by first passing a parameterized string to a constructor, then setting the
values of all the parameters, and then getting the result with the substituted
parameters.

Package: gov.ed.sfa.ita.persistence
Superclass:

Attribute Type Description

Private:
qParser java.util.StringTokenizer Used to parse through the statement.
Protected:
parameterizedStatement java.util.String Holds the parameterized statement.
statementWithoutEscapes java.util.String Holds parameterized statement after intermediate

processing step (escape characters removed).
m_parameters java.util.Vector Holds the values to be substituted for the

parameters.
Public:
none

Con/Destructor Arguments

(Type, Name)
Description

SFAParser java.lang.String statementString Only constructor for the class - you must supply
the statement string when instantiating this class.

Method Arguments

(Type, Name)

Valid Responses
(Return Type, Exceptions
Thrown)

Description

Private:
none
Protected:
getEscapeChar none java.lang.String
getNextToken none java.lang.String
getParamDelimiter none java.lang.String
getParser none java.util.StringTokenizer
processRawStatement none void
Public:
getBooleanWrappedValue SFAParameter q java.lang.String
getDateWrappedValue SFAParameter q java.lang.String
getNumericWrappedValue SFAParameter q java.lang.String

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 122 of 146

Method Arguments
(Type, Name)

Valid Responses
(Return Type, Exceptions
Thrown)

Description

getParameter int i SFAParameter
getRawStatement none java.lang.String
getStatement none java.lang.String
getStringWrappedValue SFAParameter q java.lang.String
getUserDefinedWrappedVal
ue

SFAParameter q java.lang.String

getWrappedValue SFAParameter q java.lang.String
setParams java.util.Vector parameters void

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 123 of 146

SFAQueryParser Class

Class Name: SFAQueryParser
Component: Persistence
Description: The SFAQueryParser is essentially the SFAParser class with two methods

overridden. The class converts parameterized strings into formatted SQL statements.
This is done by first passing a parameterized string to a constructor, then setting the
values of all the parameters, and then getting the result with the substituted
parameters.

Package: gov.ed.sfa.ita.persistence
Superclass: SFAParser

Attribute Type Description

Private:
none
Protected:
none
Public:
none

Con/Destructor Arguments

(Type, Name)
Description

SFAQueryParser java.lang.String queryString Only constructor for the class - you must supply
the statement string when instantiating this class.

Method Arguments

(Type, Name)

Valid Responses
(Return Type, Exceptions
Thrown)

Description

Private:
none
Protected:
processRawStatement none void
Public:
setParams java.util.Vector parameters void

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 124 of 146

SFAOracleParser Class

Class Name: SFAOracleParser
Component: Persistence
Description: The SFAOracleParser is essentially the SFAQueryParser class with two methods

overridden. The class converts parameterized strings into formatted SQL statements.
This is done by first passing a parameterized string to a constructor, then setting the
values of all the parameters, and then getting the result with the substituted
parameters.

Package: gov.ed.sfa.ita.persistence
Superclass: SFAParser

Attribute Type Description

Private:
none
Protected:
none
Public:
none

Con/Destructor Arguments

(Type, Name)
Description

SFAOracleParser java.lang.String queryString Only constructor for the class - you must supply
the statement string when instantiating this class.

Method Arguments

(Type, Name)

Valid Responses
(Return Type, Exceptions
Thrown)

Description

Private:
none
Protected:
none
Public:
getBooleanWrappedValue SFAParameter q java.lang.String
getDateWrappedValue SFAParameter q java.lang.String

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 125 of 146

3.5.6 Class Diagrams
3.5.6.1 Persistence Classes

 SFAPersistableObjectManager

databaseType : int = AFConstants.s_DEFAULT_DATABASE_TYPE

SFAPersistableObjectManager()
SFAPersistableObjectManager()
abortTransaction()
addObject()
commitTransaction()
endTransaction()
getNextSequenceValue()
getObject()
getObjects()
getObjectsAsHashtable()
getParser()
getQuery()
nextObject()
removeObject()
removeObjects()
setDatabaseType()
updateObject()
updateObjects()

(from persistence)

SFAPersistException

getErrorCode()
getEvent()
getOriginalException()
setOriginalException()

(from persistence)

SFAResultSet

SFAResultSet()
close()
getBoolean()
getDate()
getFloat()
getInt()
getLong()
getObject()
getString()
next()

(from persistence)
SFAUnitOfWork

SFAUnitOfWork()
SFAUnitOfWork()
abort()
checkpoint()
commit()
end()
executeQuery()
executeUpdate()
getConnection()

(from persistence)

-transaction

ISFAPersistableMapper

getDeleteQuery()
getInsertQuery()

getKeySelectQuery()
getSelectQuery()
getUpdateQuery()

newFrom()
populateAttributeValues()

populateKeyAttributeValues()

(from persistence)

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 126 of 146

3.5.6.2 Parser Classes

SFAOracleParser

SFAOracleParser()
getBooleanWrappedValue()
getDateWrappedValue()

(from persistence)

SFAParser

SFAParser()
getBooleanWrappedValue()
getDateWrappedValue()
getEscapeChar()
getNextToken()
getNumericWrappedValue()
getParamDelimiter()
getParameter()
getParser()
getRawStatement()
getStatement()
getStringWrappedValue()
getUserDefinedWrappedValue()
getWrappedValue()
processRawStatement()
setParams()

(from persistence)

SFAQueryParser

SFAQueryParser()
processRawStatement()
setParams()

(from persistence)

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 127 of 146

3.5.7 Interaction Diagrams
This sequence diagram illustrates the main object interactions involved in persisting a new object
to the database, from the perspective of client code. As can be seen from the diagram, a new
business object is created, attributes are populated, and it is handed to the object manager, with
the mapper providing object to database translation logic. Updates and deletes of persistable
objects work in basically the same manner, so an understanding of the insert process, including
the flow through to the mapper and persistable object manager, should serve as solid basis for all
other persistence-type calls in this package.

8. When complete, the object
persistence operation is committed
by the application.

 : OrderRequestBC : OrderRequestBO : OrderRequestMapper : SFAPersistableObjectManager

OrderRequestBO()

getEf f ectiv edate()

setProperty id(String)

getRequestaction()

setRequestdate(String)

populateAttributeValues(Object)

addObject(String, Vector)

commitTransaction()

1. A business component (client
code) creates a business object
to store application lev el data.

2. As the client code is run, an
attribute such as the ef f ectiv e date
can be retriev ed f rom the business
object.

3. As the client code is run, an
attribute such as the property id
can be set on the business
object.

4. As the client code is run, an
attribute such as the request
action can be retriev ed f rom the
business object.

5. As the client code is run, an
attribute such as the request
date can be set f or the business
object.

6. When the object is ready to be
persisted, the apprpriate mapper
class is notif ied.

7. The persistent object manager
then handles interaction with the
database. It is prov ided with
inf ormation f rom the mapper class
as necessary .

getInsertQuery ()

getInsertParameters()

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 128 of 146

3.5.8 References
• JavaDoc on JDBC

http://www.javasoft.com/products/jdk/1.2/docs/api/index.html

• JDBC Tutorial
http://www.javasoft.com/docs/books/tutorial/jdbc/index.html

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 129 of 146

3.6 Search

3.6.1 Introduction
The search framework simplifies, standardizes, and improves the use of the Autonomy search
engine. The Autonomy Search Engine server provides a variety of methods to utilize its search
capabilities including a C API, HTTP API, and configurable CGI program. Of the three ITA R1.0
applications that used Autonomy, IFAP and Intranet 2.0 used the C API to write a custom CGI
program and Schools Portal used the configurable CGI program. Neither of these applications
followed the J2EE standards of the ITA environment nor did the applications utilize all of the
features provided by the Autonomy Search Engine Server.

This document covers only components that directly compose the Search framework. Consult
the Autonomy Application Builder HTTP API documentation for more information on topics
outside ones directly involved in the Search framework.

3.6.2 System Overview
The search framework complies with J2EE standards instead of using CGI as in the current
search engine interface. The framework consists of classes that provide a common way to access
the Autonomy HTTP API and utilize its features.

The search framework implements the following Autonomy features:

• Query search engine (including querying a custom field)

• Natural Language or "Fuzzy" query search engine (including querying a custom field)

• Display search results (including sorting by a custom field)

• Suggest additional search results

3.6.3 Design Considerations
3.6.3.1 Assumptions and Dependencies

It is assumed that this framework will be deployed in a J2EE application server environment. As
the current production server for SFA is IBM WebSphere 3.5, the framework will be compiled
using its required JDK version 1.2.2. It will also work with the current JavaServer Pages (1.1),
Java Servlet (2.2), Java Messaging Service (1.0.1), and Java Database Connectivity (2.0)
specifications for this server.

3.6.3.2 Goals and Guidelines

The goal of the search framework is to create a simplified and reusable Java based search
framework for use with the Autonomy Search Engine server. This search framework
standardizes the mechanism in which SFA applications access the Autonomy Search Engine

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 130 of 146

server. This search framework follows J2EE standards and is intended for use in JSPs, servlets,
EJBs, or JavaBeans executed on the WebSphere Application Server. This search framework is also
independent of Autonomy version and will allow for future upgrades of the Autonomy Search
Engine server without modifications to this framework.

3.6.3.3 Development Methods

This framework was developed using general object-oriented software development techniques
as are specified in any standard text on the Java programming language. As the framework itself
is fairly straightforward in its class and relationship patterns it employs, no object oriented
modeling tool or methodology was specifically used in its design. However, the resulting source
code has been documented with standard class diagrams and sequence diagrams in order to
illustrate its structure more readily. These diagrams should be of great help to programmers
unfamiliar with this framework.

3.6.3.4 Future Autonomy Product Upgrades

An important design consideration for this search framework was compatibility for future
Autonomy product upgrade. This design achieves compatibility for future upgrades of
Autonomy on two fronts. Firstly, the design is based on the HTTP API, which has not changed
since the first version of Autonomy. In addition, according to Autonomy technical
representatives, the HTTP API will remain the method of communication and commands for
future versions of Autonomy. Essentially the HTTP API is as fundamental to Autonomy
communication as HTTP is to Web browsers and Web servers. Secondly, the design is flexible so
that any new functionality or changes in functionality will not require any changes in any
existing client code that uses this search framework. This is accomplished by not revealing any
of the implementation details to the client using the search framework. The methods revealed to
the client represent search functionality, but not any Autonomy Search Engine implementation
details. For any additional features or changes in the Autonomy Search Engine product, these
medications will be made in the search framework and not in the client code. Together these two
design considerations will help make this framework compatible with future versions of
Autonomy products.

3.6.4 System Architecture
3.6.4.1 Overview

The Autonomy Search Engine server provides the capability for general queries, natural
language or "fuzzy" queries, and suggestions of similar documents for Web-based applications.
General queries allow for the traditional search capability within documents in addition to the
ability to restrict search results to only those documents with specified field values or ranges or
with similarity scores above a set threshold. Natural language or "fuzzy" queries score words
and return results similar to the query in case the query language is slightly different than the
terminology contained in the actual documents. Once the user has found a result that is relevant

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 131 of 146

to the original query, the Autonomy Search Engine server can suggest other documents similar to
it.

Since there is significant similarity between Java to Autonomy Search Engine server interactions
and Java to RDBMS database interactions, this search framework is based on the Java 2 Java Data
Base Connectivity (JDBC) model for Connections, Statements, and ResultSets. This is a proven
model that is familiar to most Java programmers making this search framework easy to learn and
use.

The Search framework consists of three classes listed below:

• AutonomyConnection

• AutonomyStatement

• AutonomyRestultSet

These classes wrap the underlying HTTP API commands provided by the Autonomy Search
Engine server. The AutonomyConnection class represents the Autonomy Search Engine Server
connection information. The AutonomyStatement class represents statements sent to the
Autonomy Search Engine server. The AutonomyResultSet class represents results returned from
the Autonomy Search Engine server.

For exception handling and logging in this search framework, the RCS exception handling and
logging frameworks will be used. These frameworks will ensure that sufficient exception
handling and logging are included with this search framework.

Figure 8 below illustrates the interaction between any J2EE component (JSP, Servlet, EJB,
JavaBean), the Search framework, and the Autonomy Search Engine server.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 132 of 146

Figure 8: Interaction between Autonomy Search framework and Autonomy Search Engine Server

3.6.4.2 Subsystem Architecture: AutonomyConnection

This component represents the Autonomy Search Engine server. It contains the information
necessary to connect to the Autonomy Search Engine server. It also contains a method to check
the status of the Autonomy Search Engine server. This method uses an Autonomy HTTP API
command and the java.net package to issue and process the HTTP command for status
information from the Autonomy Search Engine Server. The Autonomy Search Engine server
information such as the hostname and port numbers can vary and therefore this is read from an
autonomy.properties file when creating the AutonomyConnection object. The createStatement
method creates an AutonomyStatement object and with the proper connection information.

3.6.4.3 Subsystem Architecture: AutonomyStatement

This component represents statements sent to the Autonomy Search Engine server and follows
the model of the Java 2 JDBC Statement class. Statements are created dynamically using the
various methods contained in the AutonomyStatement class. These methods create the HTTP
command string sent to the Autonomy Search Engine server. There are three methods that
connect to the Autonomy Search Engine server and execute general queries, "fuzzy" queries, and
suggestions based on similar documents. These three methods use the java.net package to issue

WebSphere Application Server

Autonomy Search
Engine Server

J2EE
Component

Autonomy
Search
Framework

Autonomy
HTTP API

DRE

Response

Request

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 133 of 146

and process HTTP communication and commands to the Autonomy Search Engine server. There
is a default query that is executed when all of the attributes of an AutonomyStatement are not set.
The parameters of this default query are defined in an autonomy.properties file and are set at the
creation of the AutonomyStatement object. The AutonomyStatement object can also be reset to
these default parameters by using the reset() method.

For example, a statement is first created using the createStatement method on an
AutonomyConnection object. The AutonomyStatement is then built dynamically using at
minimum the setQueryText() and setMaxNumResults() methods. All other statement methods
are optional unless the query needs to override the default search parameters in
autonomy.properties. The statement is then sent to the Autonomy Search Engine server by
calling executeQuery(). This method returns the correct number of results as an
AutonomyResultSet object.

3.6.4.4 Subsystem Architecture: AutonomyResultSet

This component represents results returned from the Autonomy Search Engine server and
follows the model of the Java 2 JDBC ResultSet class. ResultSets represent rows of search results
with each row containing information such as the document title, document URL, and document
summary. The two main types of methods inside AutonomyResultSet include methods for the
iteration through the rows of the AutonomyResultSet and methods for getting information about
each row. For example, the next() method sets the cursor to the next row in the
AutonomyResultSet and returns true as long as there are more rows left. An example of the
other type of method includes the getTitle() method, which returns the document title of the
current row's result.

The AutonomyResultSet object is returned after an executeQuery, executeFuzzyQuery, or
executeSuggest method is invoked on an AutonomyStatement object. Internal to the
AutonomyResultSet class, the actual results from the Autonomy Search Engine server are pure
text and are contained in an InputStream object that is then converted to a BufferedReader object
for easier parsing and text manipulation.

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 134 of 146

3.6.5 Detailed System Design
AutonomyConnection

Class Name: AutonomyConnection

Component: Search

Description: This class represents the Autonomy search server.

Package: gov.ed.sfa.ita.search

Superclass: none

Attribute Type Description

Private:

host String Host name of Autonomy search server

indexPort int Index port number of Autonomy search server

queryPort int Query port number of Autonomy search server

Public:

none

Con/Destructors Arguments

(Type, Name)

Description

AutonomyConnection None Creates Autonomy object and assigns host,
queryPort, and indexPort according to a
autonomy.properties file

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 135 of 146

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions
Thrown)

Description

Private

getProperties None boolean Reads the Autonomy.properties
file and sets attributes

Public:

createStatement None AutonomyStateme
nt

Returns an AutonomyStatement
object with the proper
connection information

getHost None String Returns the hostname of
Autonomy object

getIndexPort None int Returns the index port of
Autonomy object

getQueryPort None int Returns the query port of
Autonomy object

isServerStatusOK None boolean Returns true if Autonomy server
status indicates the server is
running

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 136 of 146

AutonomyStatement

Class Name: AutonomyStatement

Component: Search

Description: This class represents statements sent the Autonomy search server such as search
queries.

Package: gov.ed.sfa.ita.search

Superclass: None

Attribute Type Description

Private:

aCon AutonomyConnection Reference to Autonomy Connection object

aRS AutonomyResultSet Reference to AutonomyResultSet object

attachtoname String Represents list of database names to query within
Autonomy

attachtonum String Represents list of database numbers to query
within Autonomy

customField String Represents any custom or extra options added by a
user to the Autonomy search server or upgrades

docid String Represents a list of document ids

qmethod String Indicates type of query to perform

qnum int Represents maximum number of results to return

querystmt String Represents full query string to send

querytext String Represents list of search terms

threshhold int Represent minimum threshold of results to return

xoptions String Represents extra options for searches such as sort
by date

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 137 of 146

Con/Destructors Arguments

(Type, Name)

Description

AutonomyStatement AutonomyConnection aCon Creates AutonomyStatement object and uses the
AutonomyConnection object

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions Thrown)

Description

Private:

getProperties None boolean Reads the Autonomy.properties
file and sets attributes

Public:

execute String querystmt AutonomyResultSet
throw
AutonomyException

Executes a generic query
statement passed as parameter.
Called by other execute methods
to do all communication

executeFuzzyQuery none AutonomyResultSet
throws
AutonomyException

Executes a fuzzy query on the
Autonomy search server

executeQuery none AutonomyResultSet
throws
AutonomyException

Executes a query on the
Autonomy search server

executeSuggest String docid AutonomyResultSet
throws
SFAException

Executes a suggest on the
Autonomy search server based
on the selected document

setCustomField String fieldName none Sets the values of the optional
custom field

setDatabaseNums String attachto none Sets the list of databases to query
in Autonomy

setDatabaseNames String attachtoname none Sets the list of databases to query
in Autonomy

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 138 of 146

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions Thrown)

Description

setMaxNumResults int qnum none Sets the maximum number of
results

setMinThreshold int threshhold none Sets the minimum threshold for
results

setQueryAllWords none none Sets the query to a Boolean AND

setQueryAnyWords none none Sets the query to a Boolean OR

setQueryText String querytext none Sets the query terms for searches

setQueryTextCustomField String querytext,

String fieldname

none Set the query terms fir searches
in a particular field

setSortByCustomField String fieldName none Sets the option to return results
by sorting based on the custom
field

setSortByDate none none Sets the option to return results
by date and not relevance

setSortByRelevance none none Sets the option to return results
by relevance and not by date

setSortByRelevanceDate none none Sets the option to return results
by relevance and then date

reset none boolean Resets the object to the default
search parameters in
autonomy.properties file

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 139 of 146

AutonomyResultSet

Class Name: AutonomyResultSet

Component: Search

Description: This class represents results returned from the Autonomy search server

Package: gov.ed.sfa.ita.search

Superclass: None

Attribute Type Description

Private:

bfrResults BufferedReader Buffered reader results used for parsing Autonomy
query raw results

currentRow int Current row location of cursor

istrResults InputStream The raw results returned from the Autonomy
query

numRows int Number of rows in AutonomyResultSet

Public:

none

Con/Destructors Arguments

(Type, Name)

Description

AutonomyResultSet InputStream istrResults Creates AutonomyResultSet object with
InputStream as parameter

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions Thrown)

Description

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 140 of 146

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions Thrown)

Description

Public:

absolute int row boolean Jumps to the row specified in
parameter, returns true is
successful

getCustomField String fieldName String Returns the value of the custom
field defined in the parameter

getDatabaseNum none int Returns document database
number of current row

getID none String Returns document id of current
row

getNumResults none int Returns the number of results
returned in the query

getNumRows none int Returns the number of rows in
the AutonomyResultSet

getQuickSummary none String Returns the quick summary of
the current row

getRow none int Returns the current row location
of the cursor

getSummary none String Returns document summary of
current row

getTitle none String Returns document title of current
row

getURL none String Returns document URL of
current row

getWeight none int Returns document weight of
current row

next none boolean Moves to the next row in the
AutonomyResultSet, returns true
if successful

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 141 of 146

Methods Arguments

(Type, Name)

Valid Responses

(Return Type,
Exceptions Thrown)

Description

previous none boolean Moves to the previous row in the
AutonomyResultSet, returns true
if successful

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 142 of 146

3.6.6 Class Diagrams

AutonomyConnection

host : String
indexPort : String
query Port : String

AutonomyConnection()
createStatement()
getHost()
getIndexPort()
getProperties()
getQuery Port()
isServ erStatusOK()

AutonomyResultSet

bf rResults : Buf f eredReader
currentRow : int
istrResults : InputStream
numRows : int

absolute()
AutonomyResultSet()
getCustomField()
getDatabaseNum()
getID()
getNumResults()
getNumRows()
getQuickSummary ()
getRow()
getSummary ()
getTitle()
getURL()
getWeight()
next()
prev ious()

Autonomy Statement

aCon : AutonomyConnection
aRS : AutonomyResultSet
attachtoname : String
attachtonum : String
customField : String
docid : String
qmethod : String
qnum : String
query stmt : String
query text : String
threshhold : String
xoptions : String

Autonomy Statement()
execute()
executeFuzzy Query ()
executeQuery ()
executeSuggest()
getProperties()
reset()
setCustomField()
setDatabaseNames()
setDatabaseNums()
setMaxNumResults()
setMinThreshold()
setQuery AllWords()
setQuery AnyWords()
setQuery Text()
setQuery TextCustomField()
setSortByCustomField()
setSortByDate()
setSortByRelev ance()
setSortByRelev anceDate()

1..1

1..n

1..n 1..1

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 143 of 146

3.6.7 Interaction Diagrams
The following is an interaction diagram for executing a search on the Autonomy Search Engine
server and displaying the total number of results and the title and summary of the first result.

 :
AutonomyConnection

 :
AutonomyStatement

 :
AutonomyResultSet

ClientCode

1. AutonomyConnection()

3. setQueryText()

4. setMaxNumResults()

5. executeQuery()

5.1. AutonomyResultSet()

7. next()

8. getTitle()

9. getSummary()

2. createStatement()
2.1. AutonomyStatement()

6. getNumResults()

10. next()

Create an AutonomyConnection

Create an AutonomyStatement
from AutonomyConnection

Set the query text on the
AutonomyStatement

Set the max number of results
on the AutonomyStatement

Execute the query on the
AutonomyStatement and return
an AutonomyResultSet

Get the number of results and
display in client code

Go to the first result in the
AutonomyResultSet

Get the title of the first result and
display in client code

Get the summary of the first result
and display in client code

Go to the second result in the
AutonomyResultSet and so forth

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 144 of 146

3.6.8 References
• Autonomy Search Engine Server web-site

http://www.autonomy.com (follow links to "Solutions->Autonomy Server")

• Autonomy HTTP API Documentation:
See document entitled "Autonomy Application Builder: HTTP API" and located on the shared
X: drive under X:\\CIO\ITA2\AUTONOMY DOCS\

 US Department of Education
Student Financial Assistance
SFA Modernization Partner

ITA Release 2.0
Technical Specification

Version 1.1 46 - 46.1.3 Page 145 of 146

Appendix A – ITA RCS and SFA Applications Matrix
The following matrix details the current and potential usage of RCS services by SFA’s
applications.

In Use High Opportunity Medium Opportuntity Low Opportunity Not Applicable

Component Factory EIP
IFAP, Intranet R2.0, Schools
Portal

CBS, FAFSA

Email CBS (7/16) Intranet R2.0, EIP, IFAP Schools Portal FAFSA

Exception Handling FAFSA (6/20) EIP
Intranet R2.0, IFAP, Schools
Portal

CBS

Logging FAFSA (6/20) EIP Intranet R2.0, IFAP, Schools
Portal

CBS

Persistence CBS (7/16) EIP IFAP Intranet R2.0, Schools
Portal, FAFSA

Search
Intranet R2.0 (8/3),
IFAP (8/17),
Schools Portal (8/31)

EIP CBS, FAFSA

Last Updated: 6/28/01

